A data-driven SVR model for long-term runoff prediction and uncertainty analysis based on the Bayesian framework View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-07

AUTHORS

Zhongmin Liang, Yujie Li, Yiming Hu, Binquan Li, Jun Wang

ABSTRACT

Accurate and reliable long-term forecasting plays an important role in water resources management and utilization. In this paper, a hybrid model called SVR-HUP is presented to predict long-term runoff and quantify the prediction uncertainty. The model is created based on three steps. First, appropriate predictors are selected according to the correlations between meteorological factors and runoff. Second, a support vector regression (SVR) model is structured and optimized based on the LibSVM toolbox and a genetic algorithm. Finally, using forecasted and observed runoff, a hydrologic uncertainty processor (HUP) based on a Bayesian framework is used to estimate the posterior probability distribution of the simulated values, and the associated uncertainty of prediction was quantitatively analyzed. Six precision evaluation indexes, including the correlation coefficient (CC), relative root mean square error (RRMSE), relative error (RE), mean absolute percentage error (MAPE), Nash-Sutcliffe efficiency (NSE), and qualification rate (QR), are used to measure the prediction accuracy. As a case study, the proposed approach is applied in the Han River basin, South Central China. Three types of SVR models are established to forecast the monthly, flood season and annual runoff volumes. The results indicate that SVR yields satisfactory accuracy and reliability at all three scales. In addition, the results suggest that the HUP cannot only quantify the uncertainty of prediction based on a confidence interval but also provide a more accurate single value prediction than the initial SVR forecasting result. Thus, the SVR-HUP model provides an alternative method for long-term runoff forecasting. More... »

PAGES

137-149

Journal

TITLE

Theoretical and Applied Climatology

ISSUE

1-2

VOLUME

133

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00704-017-2186-6

DOI

http://dx.doi.org/10.1007/s00704-017-2186-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1085886301


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1403", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Econometrics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/14", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Economics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Hohai University", 
          "id": "https://www.grid.ac/institutes/grid.257065.3", 
          "name": [
            "College of Hydrology and Water Resources, Hohai University, No.1 Xikang Road, Gulou District, Nanjing City, Jiangsu Province, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liang", 
        "givenName": "Zhongmin", 
        "id": "sg:person.015205416245.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015205416245.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hohai University", 
          "id": "https://www.grid.ac/institutes/grid.257065.3", 
          "name": [
            "College of Hydrology and Water Resources, Hohai University, No.1 Xikang Road, Gulou District, Nanjing City, Jiangsu Province, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Yujie", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hohai University", 
          "id": "https://www.grid.ac/institutes/grid.257065.3", 
          "name": [
            "College of Hydrology and Water Resources, Hohai University, No.1 Xikang Road, Gulou District, Nanjing City, Jiangsu Province, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hu", 
        "givenName": "Yiming", 
        "id": "sg:person.016071437615.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016071437615.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hohai University", 
          "id": "https://www.grid.ac/institutes/grid.257065.3", 
          "name": [
            "College of Hydrology and Water Resources, Hohai University, No.1 Xikang Road, Gulou District, Nanjing City, Jiangsu Province, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Binquan", 
        "id": "sg:person.07704154563.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07704154563.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hohai University", 
          "id": "https://www.grid.ac/institutes/grid.257065.3", 
          "name": [
            "College of Hydrology and Water Resources, Hohai University, No.1 Xikang Road, Gulou District, Nanjing City, Jiangsu Province, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Jun", 
        "id": "sg:person.010564256172.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010564256172.55"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1029/2000wr900108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000329752"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2010.06.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001557128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jcli3937.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004489911"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.watres.2014.09.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004737136"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2007wr006737", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005234296"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2014.08.043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005674337"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/wr011i004p00533", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008625729"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2009.06.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009718309"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2006.04.030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011024851"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.envres.2015.02.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012627136"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-1694(70)90255-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012882666"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-1694(70)90255-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012882666"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.advwatres.2009.08.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012981858"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2013.11.054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013769205"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/1999wr900099", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015620391"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/joc.3995", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015962355"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmarsys.2013.07.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017184900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11269-013-0446-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017198136", 
          "https://doi.org/10.1007/s11269-013-0446-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-1694(02)00106-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020275833"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2007.01.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021253731"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2013.02.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021575427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-1694(02)00072-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022463328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-1694(01)00349-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023039160"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00704-015-1544-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024607487", 
          "https://doi.org/10.1007/s00704-015-1544-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11269-015-1168-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025313642", 
          "https://doi.org/10.1007/s11269-015-1168-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/adgeo-5-89-2005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025798020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/adgeo-5-89-2005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025798020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2011.02.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026250588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-2440-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027312764", 
          "https://doi.org/10.1007/978-1-4757-2440-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-2440-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027312764", 
          "https://doi.org/10.1007/978-1-4757-2440-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2012.11.041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027838144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-3264-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028478311", 
          "https://doi.org/10.1007/978-1-4757-3264-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-3264-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028478311", 
          "https://doi.org/10.1007/978-1-4757-3264-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/hess-9-322-2005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029499711"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/hess-9-322-2005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029499711"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2009.03.032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030542804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hyp.7679", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030701168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hyp.7679", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030701168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2014.01.062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030774350"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2005wr004591", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030798001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/hessd-10-11795-2013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032356075"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2000wr900411", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033261063"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/hess-4-407-2000", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035119521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/hess-4-407-2000", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035119521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/02626667.2012.714468", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036476488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00477-013-0698-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038070850", 
          "https://doi.org/10.1007/s00477-013-0698-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hyp.7392", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038338617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hyp.7392", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038338617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2011.04.114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038640768"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1012494009640", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040051793", 
          "https://doi.org/10.1023/a:1012494009640"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2005wr004368", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043517567"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/02626667.2015.1035658", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043745092"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2010wr009945", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045603876"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12665-015-4749-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046064874", 
          "https://doi.org/10.1007/s12665-015-4749-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2003.08.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046406598"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2003.08.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046406598"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/1998wr900018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046937571"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/hess-19-2859-2015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047288279"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2008.03.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048941221"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2010wr009922", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049795553"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2015.09.047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051121424"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2005wr004745", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052473400"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)he.1943-5584.0000742", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057634321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)he.1943-5584.0000868", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057634446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2166/hydro.2012.110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069134906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2166/hydro.2013.134", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069135000"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2166/nh.2015.062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069135746"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-07", 
    "datePublishedReg": "2018-07-01", 
    "description": "Accurate and reliable long-term forecasting plays an important role in water resources management and utilization. In this paper, a hybrid model called SVR-HUP is presented to predict long-term runoff and quantify the prediction uncertainty. The model is created based on three steps. First, appropriate predictors are selected according to the correlations between meteorological factors and runoff. Second, a support vector regression (SVR) model is structured and optimized based on the LibSVM toolbox and a genetic algorithm. Finally, using forecasted and observed runoff, a hydrologic uncertainty processor (HUP) based on a Bayesian framework is used to estimate the posterior probability distribution of the simulated values, and the associated uncertainty of prediction was quantitatively analyzed. Six precision evaluation indexes, including the correlation coefficient (CC), relative root mean square error (RRMSE), relative error (RE), mean absolute percentage error (MAPE), Nash-Sutcliffe efficiency (NSE), and qualification rate (QR), are used to measure the prediction accuracy. As a case study, the proposed approach is applied in the Han River basin, South Central China. Three types of SVR models are established to forecast the monthly, flood season and annual runoff volumes. The results indicate that SVR yields satisfactory accuracy and reliability at all three scales. In addition, the results suggest that the HUP cannot only quantify the uncertainty of prediction based on a confidence interval but also provide a more accurate single value prediction than the initial SVR forecasting result. Thus, the SVR-HUP model provides an alternative method for long-term runoff forecasting.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00704-017-2186-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1086664", 
        "issn": [
          "0177-798X", 
          "1434-4483"
        ], 
        "name": "Theoretical and Applied Climatology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1-2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "133"
      }
    ], 
    "name": "A data-driven SVR model for long-term runoff prediction and uncertainty analysis based on the Bayesian framework", 
    "pagination": "137-149", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b9158ea4a83eb28df06ba9df086ebd1d04792cab43cf65d9635cb47847c21b21"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00704-017-2186-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1085886301"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00704-017-2186-6", 
      "https://app.dimensions.ai/details/publication/pub.1085886301"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113641_00000004.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00704-017-2186-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00704-017-2186-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00704-017-2186-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00704-017-2186-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00704-017-2186-6'


 

This table displays all metadata directly associated to this object as RDF triples.

270 TRIPLES      21 PREDICATES      85 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00704-017-2186-6 schema:about anzsrc-for:14
2 anzsrc-for:1403
3 schema:author N61fbeb7d6b50485eb7ccc67160011174
4 schema:citation sg:pub.10.1007/978-1-4757-2440-0
5 sg:pub.10.1007/978-1-4757-3264-1
6 sg:pub.10.1007/s00477-013-0698-x
7 sg:pub.10.1007/s00704-015-1544-5
8 sg:pub.10.1007/s11269-013-0446-5
9 sg:pub.10.1007/s11269-015-1168-7
10 sg:pub.10.1007/s12665-015-4749-0
11 sg:pub.10.1023/a:1012494009640
12 https://doi.org/10.1002/hyp.7392
13 https://doi.org/10.1002/hyp.7679
14 https://doi.org/10.1002/joc.3995
15 https://doi.org/10.1016/0022-1694(70)90255-6
16 https://doi.org/10.1016/j.advwatres.2009.08.003
17 https://doi.org/10.1016/j.envres.2015.02.002
18 https://doi.org/10.1016/j.eswa.2011.04.114
19 https://doi.org/10.1016/j.jhydrol.2003.08.011
20 https://doi.org/10.1016/j.jhydrol.2006.04.030
21 https://doi.org/10.1016/j.jhydrol.2007.01.013
22 https://doi.org/10.1016/j.jhydrol.2008.03.027
23 https://doi.org/10.1016/j.jhydrol.2009.03.032
24 https://doi.org/10.1016/j.jhydrol.2009.06.005
25 https://doi.org/10.1016/j.jhydrol.2010.06.033
26 https://doi.org/10.1016/j.jhydrol.2011.02.021
27 https://doi.org/10.1016/j.jhydrol.2012.11.041
28 https://doi.org/10.1016/j.jhydrol.2013.02.012
29 https://doi.org/10.1016/j.jhydrol.2013.11.054
30 https://doi.org/10.1016/j.jhydrol.2014.01.062
31 https://doi.org/10.1016/j.jhydrol.2014.08.043
32 https://doi.org/10.1016/j.jhydrol.2015.09.047
33 https://doi.org/10.1016/j.jmarsys.2013.07.017
34 https://doi.org/10.1016/j.watres.2014.09.011
35 https://doi.org/10.1016/s0022-1694(01)00349-3
36 https://doi.org/10.1016/s0022-1694(02)00072-0
37 https://doi.org/10.1016/s0022-1694(02)00106-3
38 https://doi.org/10.1029/1998wr900018
39 https://doi.org/10.1029/1999wr900099
40 https://doi.org/10.1029/2000wr900108
41 https://doi.org/10.1029/2000wr900411
42 https://doi.org/10.1029/2005wr004368
43 https://doi.org/10.1029/2005wr004591
44 https://doi.org/10.1029/2005wr004745
45 https://doi.org/10.1029/2007wr006737
46 https://doi.org/10.1029/2010wr009922
47 https://doi.org/10.1029/2010wr009945
48 https://doi.org/10.1029/wr011i004p00533
49 https://doi.org/10.1061/(asce)he.1943-5584.0000742
50 https://doi.org/10.1061/(asce)he.1943-5584.0000868
51 https://doi.org/10.1080/02626667.2012.714468
52 https://doi.org/10.1080/02626667.2015.1035658
53 https://doi.org/10.1175/jcli3937.1
54 https://doi.org/10.2166/hydro.2012.110
55 https://doi.org/10.2166/hydro.2013.134
56 https://doi.org/10.2166/nh.2015.062
57 https://doi.org/10.5194/adgeo-5-89-2005
58 https://doi.org/10.5194/hess-19-2859-2015
59 https://doi.org/10.5194/hess-4-407-2000
60 https://doi.org/10.5194/hess-9-322-2005
61 https://doi.org/10.5194/hessd-10-11795-2013
62 schema:datePublished 2018-07
63 schema:datePublishedReg 2018-07-01
64 schema:description Accurate and reliable long-term forecasting plays an important role in water resources management and utilization. In this paper, a hybrid model called SVR-HUP is presented to predict long-term runoff and quantify the prediction uncertainty. The model is created based on three steps. First, appropriate predictors are selected according to the correlations between meteorological factors and runoff. Second, a support vector regression (SVR) model is structured and optimized based on the LibSVM toolbox and a genetic algorithm. Finally, using forecasted and observed runoff, a hydrologic uncertainty processor (HUP) based on a Bayesian framework is used to estimate the posterior probability distribution of the simulated values, and the associated uncertainty of prediction was quantitatively analyzed. Six precision evaluation indexes, including the correlation coefficient (CC), relative root mean square error (RRMSE), relative error (RE), mean absolute percentage error (MAPE), Nash-Sutcliffe efficiency (NSE), and qualification rate (QR), are used to measure the prediction accuracy. As a case study, the proposed approach is applied in the Han River basin, South Central China. Three types of SVR models are established to forecast the monthly, flood season and annual runoff volumes. The results indicate that SVR yields satisfactory accuracy and reliability at all three scales. In addition, the results suggest that the HUP cannot only quantify the uncertainty of prediction based on a confidence interval but also provide a more accurate single value prediction than the initial SVR forecasting result. Thus, the SVR-HUP model provides an alternative method for long-term runoff forecasting.
65 schema:genre research_article
66 schema:inLanguage en
67 schema:isAccessibleForFree false
68 schema:isPartOf N9037e17d5bea4baa84fbcea217acc295
69 Nc3e0f28059a94c30bce41c3afe5fad64
70 sg:journal.1086664
71 schema:name A data-driven SVR model for long-term runoff prediction and uncertainty analysis based on the Bayesian framework
72 schema:pagination 137-149
73 schema:productId N4484108ff68f4ddeb7494cb308ec7861
74 Nb2fb3eb55feb4934be12fdd92d572600
75 Nbe658b0cf1ec4bdb89b55cd1899bfc6f
76 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085886301
77 https://doi.org/10.1007/s00704-017-2186-6
78 schema:sdDatePublished 2019-04-11T10:29
79 schema:sdLicense https://scigraph.springernature.com/explorer/license/
80 schema:sdPublisher N23bf073da90242f8ae254868029c8094
81 schema:url https://link.springer.com/10.1007%2Fs00704-017-2186-6
82 sgo:license sg:explorer/license/
83 sgo:sdDataset articles
84 rdf:type schema:ScholarlyArticle
85 N0dea1010c1774c31a32133acb6d1afe4 rdf:first sg:person.07704154563.24
86 rdf:rest N30ce157b972142b59b4f2fc0c94e3729
87 N1eb50b1a129447b99fc5704830947d52 rdf:first sg:person.016071437615.34
88 rdf:rest N0dea1010c1774c31a32133acb6d1afe4
89 N23bf073da90242f8ae254868029c8094 schema:name Springer Nature - SN SciGraph project
90 rdf:type schema:Organization
91 N30ce157b972142b59b4f2fc0c94e3729 rdf:first sg:person.010564256172.55
92 rdf:rest rdf:nil
93 N4484108ff68f4ddeb7494cb308ec7861 schema:name dimensions_id
94 schema:value pub.1085886301
95 rdf:type schema:PropertyValue
96 N61fbeb7d6b50485eb7ccc67160011174 rdf:first sg:person.015205416245.28
97 rdf:rest N953eb950b46d4a7f895160ba8eb5bddc
98 N9037e17d5bea4baa84fbcea217acc295 schema:issueNumber 1-2
99 rdf:type schema:PublicationIssue
100 N953eb950b46d4a7f895160ba8eb5bddc rdf:first Nf3e69a2de343452db7eebb97dbdc6cc5
101 rdf:rest N1eb50b1a129447b99fc5704830947d52
102 Nb2fb3eb55feb4934be12fdd92d572600 schema:name doi
103 schema:value 10.1007/s00704-017-2186-6
104 rdf:type schema:PropertyValue
105 Nbe658b0cf1ec4bdb89b55cd1899bfc6f schema:name readcube_id
106 schema:value b9158ea4a83eb28df06ba9df086ebd1d04792cab43cf65d9635cb47847c21b21
107 rdf:type schema:PropertyValue
108 Nc3e0f28059a94c30bce41c3afe5fad64 schema:volumeNumber 133
109 rdf:type schema:PublicationVolume
110 Nf3e69a2de343452db7eebb97dbdc6cc5 schema:affiliation https://www.grid.ac/institutes/grid.257065.3
111 schema:familyName Li
112 schema:givenName Yujie
113 rdf:type schema:Person
114 anzsrc-for:14 schema:inDefinedTermSet anzsrc-for:
115 schema:name Economics
116 rdf:type schema:DefinedTerm
117 anzsrc-for:1403 schema:inDefinedTermSet anzsrc-for:
118 schema:name Econometrics
119 rdf:type schema:DefinedTerm
120 sg:journal.1086664 schema:issn 0177-798X
121 1434-4483
122 schema:name Theoretical and Applied Climatology
123 rdf:type schema:Periodical
124 sg:person.010564256172.55 schema:affiliation https://www.grid.ac/institutes/grid.257065.3
125 schema:familyName Wang
126 schema:givenName Jun
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010564256172.55
128 rdf:type schema:Person
129 sg:person.015205416245.28 schema:affiliation https://www.grid.ac/institutes/grid.257065.3
130 schema:familyName Liang
131 schema:givenName Zhongmin
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015205416245.28
133 rdf:type schema:Person
134 sg:person.016071437615.34 schema:affiliation https://www.grid.ac/institutes/grid.257065.3
135 schema:familyName Hu
136 schema:givenName Yiming
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016071437615.34
138 rdf:type schema:Person
139 sg:person.07704154563.24 schema:affiliation https://www.grid.ac/institutes/grid.257065.3
140 schema:familyName Li
141 schema:givenName Binquan
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07704154563.24
143 rdf:type schema:Person
144 sg:pub.10.1007/978-1-4757-2440-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027312764
145 https://doi.org/10.1007/978-1-4757-2440-0
146 rdf:type schema:CreativeWork
147 sg:pub.10.1007/978-1-4757-3264-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028478311
148 https://doi.org/10.1007/978-1-4757-3264-1
149 rdf:type schema:CreativeWork
150 sg:pub.10.1007/s00477-013-0698-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1038070850
151 https://doi.org/10.1007/s00477-013-0698-x
152 rdf:type schema:CreativeWork
153 sg:pub.10.1007/s00704-015-1544-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024607487
154 https://doi.org/10.1007/s00704-015-1544-5
155 rdf:type schema:CreativeWork
156 sg:pub.10.1007/s11269-013-0446-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017198136
157 https://doi.org/10.1007/s11269-013-0446-5
158 rdf:type schema:CreativeWork
159 sg:pub.10.1007/s11269-015-1168-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025313642
160 https://doi.org/10.1007/s11269-015-1168-7
161 rdf:type schema:CreativeWork
162 sg:pub.10.1007/s12665-015-4749-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046064874
163 https://doi.org/10.1007/s12665-015-4749-0
164 rdf:type schema:CreativeWork
165 sg:pub.10.1023/a:1012494009640 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040051793
166 https://doi.org/10.1023/a:1012494009640
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1002/hyp.7392 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038338617
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1002/hyp.7679 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030701168
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1002/joc.3995 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015962355
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/0022-1694(70)90255-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012882666
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/j.advwatres.2009.08.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012981858
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1016/j.envres.2015.02.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012627136
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/j.eswa.2011.04.114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038640768
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/j.jhydrol.2003.08.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046406598
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/j.jhydrol.2006.04.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011024851
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1016/j.jhydrol.2007.01.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021253731
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1016/j.jhydrol.2008.03.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048941221
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1016/j.jhydrol.2009.03.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030542804
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1016/j.jhydrol.2009.06.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009718309
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1016/j.jhydrol.2010.06.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001557128
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1016/j.jhydrol.2011.02.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026250588
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1016/j.jhydrol.2012.11.041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027838144
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1016/j.jhydrol.2013.02.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021575427
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1016/j.jhydrol.2013.11.054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013769205
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1016/j.jhydrol.2014.01.062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030774350
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1016/j.jhydrol.2014.08.043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005674337
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1016/j.jhydrol.2015.09.047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051121424
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1016/j.jmarsys.2013.07.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017184900
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1016/j.watres.2014.09.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004737136
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1016/s0022-1694(01)00349-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023039160
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1016/s0022-1694(02)00072-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022463328
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1016/s0022-1694(02)00106-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020275833
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1029/1998wr900018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046937571
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1029/1999wr900099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015620391
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1029/2000wr900108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000329752
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1029/2000wr900411 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033261063
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1029/2005wr004368 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043517567
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1029/2005wr004591 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030798001
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1029/2005wr004745 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052473400
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1029/2007wr006737 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005234296
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1029/2010wr009922 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049795553
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1029/2010wr009945 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045603876
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1029/wr011i004p00533 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008625729
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1061/(asce)he.1943-5584.0000742 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057634321
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1061/(asce)he.1943-5584.0000868 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057634446
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1080/02626667.2012.714468 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036476488
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1080/02626667.2015.1035658 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043745092
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1175/jcli3937.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004489911
251 rdf:type schema:CreativeWork
252 https://doi.org/10.2166/hydro.2012.110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069134906
253 rdf:type schema:CreativeWork
254 https://doi.org/10.2166/hydro.2013.134 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069135000
255 rdf:type schema:CreativeWork
256 https://doi.org/10.2166/nh.2015.062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069135746
257 rdf:type schema:CreativeWork
258 https://doi.org/10.5194/adgeo-5-89-2005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025798020
259 rdf:type schema:CreativeWork
260 https://doi.org/10.5194/hess-19-2859-2015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047288279
261 rdf:type schema:CreativeWork
262 https://doi.org/10.5194/hess-4-407-2000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035119521
263 rdf:type schema:CreativeWork
264 https://doi.org/10.5194/hess-9-322-2005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029499711
265 rdf:type schema:CreativeWork
266 https://doi.org/10.5194/hessd-10-11795-2013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032356075
267 rdf:type schema:CreativeWork
268 https://www.grid.ac/institutes/grid.257065.3 schema:alternateName Hohai University
269 schema:name College of Hydrology and Water Resources, Hohai University, No.1 Xikang Road, Gulou District, Nanjing City, Jiangsu Province, China
270 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...