Ontology type: schema:ScholarlyArticle
2015-10-09
AUTHORSH. Baltacı, T. Kındap, A. Ünal, M. Karaca
ABSTRACTIn this study, regional patterns of precipitation in Marmara are described for the first time by means of Ward’s hierarchical cluster analysis. Daily values of winter precipitation data based on 19 meteorological stations were used for the period from 1960 to 2012. Five clusters of coherent zones were determined, namely Black Sea-Marmara, Black Sea, Marmara, Thrace, and Aegean sub-regions. To investigate the prevailing atmospheric circulation types (CTs) that cause precipitation occurrence and intensity in these five different rainfall sub-basins, objective Lamb weather type (LWT) methodology was applied to National Centers of Environmental Prediction (NCEP)/National Center for Atmospheric Research (NCAR) reanalysis of daily mean sea level pressure (MSLP) data. Precipitation occurrence suggested that wet CTs (i.e. N, NE, NW, and C) offer a high chance of precipitation in all sub-regions. For the eastern (western) part of the region, the high probability of rainfall occurrence is shown under the influence of E (SE, S, SW) atmospheric CTs. In terms of precipitation intensity, N and C CTs had the highest positive gradients in all the sub-basins of the Marmara. In addition, although Marmara and Black Sea sub-regions have the highest daily rainfall potential during NE types, high daily rainfall totals are recorded in all sub-regions except the Black Sea during NW types. More... »
PAGES563-572
http://scigraph.springernature.com/pub.10.1007/s00704-015-1653-1
DOIhttp://dx.doi.org/10.1007/s00704-015-1653-1
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1007150721
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Earth Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Atmospheric Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Turkish State Meteorological Service, K\u00fct\u00fck\u00e7\u00fc Alibey Caddesi No.4, 06120, Ankara, Turkey",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Eurasia Institute of Earth Sciences, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey",
"Turkish State Meteorological Service, K\u00fct\u00fck\u00e7\u00fc Alibey Caddesi No.4, 06120, Ankara, Turkey"
],
"type": "Organization"
},
"familyName": "Baltac\u0131",
"givenName": "H.",
"id": "sg:person.014261602221.18",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014261602221.18"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Eurasia Institute of Earth Sciences, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey",
"id": "http://www.grid.ac/institutes/grid.10516.33",
"name": [
"Eurasia Institute of Earth Sciences, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey"
],
"type": "Organization"
},
"familyName": "K\u0131ndap",
"givenName": "T.",
"id": "sg:person.01222373430.82",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01222373430.82"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Eurasia Institute of Earth Sciences, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey",
"id": "http://www.grid.ac/institutes/grid.10516.33",
"name": [
"Eurasia Institute of Earth Sciences, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey"
],
"type": "Organization"
},
"familyName": "\u00dcnal",
"givenName": "A.",
"id": "sg:person.011307530435.08",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011307530435.08"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Eurasia Institute of Earth Sciences, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey",
"id": "http://www.grid.ac/institutes/grid.10516.33",
"name": [
"Eurasia Institute of Earth Sciences, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey"
],
"type": "Organization"
},
"familyName": "Karaca",
"givenName": "M.",
"id": "sg:person.011612742167.06",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011612742167.06"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/s00703-010-0103-y",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1041727212",
"https://doi.org/10.1007/s00703-010-0103-y"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00704-011-0449-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1003170440",
"https://doi.org/10.1007/s00704-011-0449-1"
],
"type": "CreativeWork"
}
],
"datePublished": "2015-10-09",
"datePublishedReg": "2015-10-09",
"description": "In this study, regional patterns of precipitation in Marmara are described for the first time by means of Ward\u2019s hierarchical cluster analysis. Daily values of winter precipitation data based on 19 meteorological stations were used for the period from 1960 to 2012. Five clusters of coherent zones were determined, namely Black Sea-Marmara, Black Sea, Marmara, Thrace, and Aegean sub-regions. To investigate the prevailing atmospheric circulation types (CTs) that cause precipitation occurrence and intensity in these five different rainfall sub-basins, objective Lamb weather type (LWT) methodology was applied to National Centers of Environmental Prediction (NCEP)/National Center for Atmospheric Research (NCAR) reanalysis of daily mean sea level pressure (MSLP) data. Precipitation occurrence suggested that wet CTs (i.e. N, NE, NW, and C) offer a high chance of precipitation in all sub-regions. For the eastern (western) part of the region, the high probability of rainfall occurrence is shown under the influence of E (SE, S, SW) atmospheric CTs. In terms of precipitation intensity, N and C CTs had the highest positive gradients in all the sub-basins of the Marmara. In addition, although Marmara and Black Sea sub-regions have the highest daily rainfall potential during NE types, high daily rainfall totals are recorded in all sub-regions except the Black Sea during NW types.",
"genre": "article",
"id": "sg:pub.10.1007/s00704-015-1653-1",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1086664",
"issn": [
"0177-798X",
"1434-4483"
],
"name": "Theoretical and Applied Climatology",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "3-4",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "127"
}
],
"keywords": [
"atmospheric circulation types",
"circulation types",
"Black Sea",
"precipitation occurrence",
"mean sea level pressure data",
"regional patterns",
"sea level pressure data",
"Atmospheric Research reanalysis",
"wettest circulation types",
"daily rainfall totals",
"winter precipitation data",
"hierarchical cluster analysis",
"Environmental Prediction",
"precipitation intensity",
"rainfall totals",
"rainfall potential",
"rainfall occurrence",
"precipitation data",
"eastern part",
"meteorological stations",
"Ward's hierarchical cluster analysis",
"different rainfall",
"Marmara",
"coherent zones",
"National Center",
"Sea",
"daily values",
"precipitation",
"positive gradient",
"NW type",
"pressure data",
"occurrence",
"rainfall",
"cluster analysis",
"reanalysis",
"NE types",
"zone",
"stations",
"Thrace",
"gradient",
"patterns",
"intensity",
"region",
"data",
"first time",
"influence",
"period",
"part",
"high probability",
"center",
"prediction",
"types",
"values",
"time",
"analysis",
"potential",
"study",
"means",
"methodology",
"type methodology",
"probability",
"terms",
"addition",
"clusters",
"higher chance",
"chance",
"total"
],
"name": "The influence of atmospheric circulation types on regional patterns of precipitation in Marmara (NW Turkey)",
"pagination": "563-572",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1007150721"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s00704-015-1653-1"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s00704-015-1653-1",
"https://app.dimensions.ai/details/publication/pub.1007150721"
],
"sdDataset": "articles",
"sdDatePublished": "2022-08-04T17:02",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_666.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s00704-015-1653-1"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00704-015-1653-1'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00704-015-1653-1'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00704-015-1653-1'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00704-015-1653-1'
This table displays all metadata directly associated to this object as RDF triples.
157 TRIPLES
21 PREDICATES
93 URIs
83 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s00704-015-1653-1 | schema:about | anzsrc-for:04 |
2 | ″ | ″ | anzsrc-for:0401 |
3 | ″ | schema:author | N1f07524bfeb64ebb8627b5542ce69b19 |
4 | ″ | schema:citation | sg:pub.10.1007/s00703-010-0103-y |
5 | ″ | ″ | sg:pub.10.1007/s00704-011-0449-1 |
6 | ″ | schema:datePublished | 2015-10-09 |
7 | ″ | schema:datePublishedReg | 2015-10-09 |
8 | ″ | schema:description | In this study, regional patterns of precipitation in Marmara are described for the first time by means of Ward’s hierarchical cluster analysis. Daily values of winter precipitation data based on 19 meteorological stations were used for the period from 1960 to 2012. Five clusters of coherent zones were determined, namely Black Sea-Marmara, Black Sea, Marmara, Thrace, and Aegean sub-regions. To investigate the prevailing atmospheric circulation types (CTs) that cause precipitation occurrence and intensity in these five different rainfall sub-basins, objective Lamb weather type (LWT) methodology was applied to National Centers of Environmental Prediction (NCEP)/National Center for Atmospheric Research (NCAR) reanalysis of daily mean sea level pressure (MSLP) data. Precipitation occurrence suggested that wet CTs (i.e. N, NE, NW, and C) offer a high chance of precipitation in all sub-regions. For the eastern (western) part of the region, the high probability of rainfall occurrence is shown under the influence of E (SE, S, SW) atmospheric CTs. In terms of precipitation intensity, N and C CTs had the highest positive gradients in all the sub-basins of the Marmara. In addition, although Marmara and Black Sea sub-regions have the highest daily rainfall potential during NE types, high daily rainfall totals are recorded in all sub-regions except the Black Sea during NW types. |
9 | ″ | schema:genre | article |
10 | ″ | schema:isAccessibleForFree | false |
11 | ″ | schema:isPartOf | N035ecf2b4aaa49898daab2646c889fe0 |
12 | ″ | ″ | N1df357acb5f048f2bf4cdf29f21b6ab8 |
13 | ″ | ″ | sg:journal.1086664 |
14 | ″ | schema:keywords | Atmospheric Research reanalysis |
15 | ″ | ″ | Black Sea |
16 | ″ | ″ | Environmental Prediction |
17 | ″ | ″ | Marmara |
18 | ″ | ″ | NE types |
19 | ″ | ″ | NW type |
20 | ″ | ″ | National Center |
21 | ″ | ″ | Sea |
22 | ″ | ″ | Thrace |
23 | ″ | ″ | Ward's hierarchical cluster analysis |
24 | ″ | ″ | addition |
25 | ″ | ″ | analysis |
26 | ″ | ″ | atmospheric circulation types |
27 | ″ | ″ | center |
28 | ″ | ″ | chance |
29 | ″ | ″ | circulation types |
30 | ″ | ″ | cluster analysis |
31 | ″ | ″ | clusters |
32 | ″ | ″ | coherent zones |
33 | ″ | ″ | daily rainfall totals |
34 | ″ | ″ | daily values |
35 | ″ | ″ | data |
36 | ″ | ″ | different rainfall |
37 | ″ | ″ | eastern part |
38 | ″ | ″ | first time |
39 | ″ | ″ | gradient |
40 | ″ | ″ | hierarchical cluster analysis |
41 | ″ | ″ | high probability |
42 | ″ | ″ | higher chance |
43 | ″ | ″ | influence |
44 | ″ | ″ | intensity |
45 | ″ | ″ | mean sea level pressure data |
46 | ″ | ″ | means |
47 | ″ | ″ | meteorological stations |
48 | ″ | ″ | methodology |
49 | ″ | ″ | occurrence |
50 | ″ | ″ | part |
51 | ″ | ″ | patterns |
52 | ″ | ″ | period |
53 | ″ | ″ | positive gradient |
54 | ″ | ″ | potential |
55 | ″ | ″ | precipitation |
56 | ″ | ″ | precipitation data |
57 | ″ | ″ | precipitation intensity |
58 | ″ | ″ | precipitation occurrence |
59 | ″ | ″ | prediction |
60 | ″ | ″ | pressure data |
61 | ″ | ″ | probability |
62 | ″ | ″ | rainfall |
63 | ″ | ″ | rainfall occurrence |
64 | ″ | ″ | rainfall potential |
65 | ″ | ″ | rainfall totals |
66 | ″ | ″ | reanalysis |
67 | ″ | ″ | region |
68 | ″ | ″ | regional patterns |
69 | ″ | ″ | sea level pressure data |
70 | ″ | ″ | stations |
71 | ″ | ″ | study |
72 | ″ | ″ | terms |
73 | ″ | ″ | time |
74 | ″ | ″ | total |
75 | ″ | ″ | type methodology |
76 | ″ | ″ | types |
77 | ″ | ″ | values |
78 | ″ | ″ | wettest circulation types |
79 | ″ | ″ | winter precipitation data |
80 | ″ | ″ | zone |
81 | ″ | schema:name | The influence of atmospheric circulation types on regional patterns of precipitation in Marmara (NW Turkey) |
82 | ″ | schema:pagination | 563-572 |
83 | ″ | schema:productId | N4a708f3777424bfeafe279b9020614e6 |
84 | ″ | ″ | Nf9f0629c748d4b2b8b4d06e461181875 |
85 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1007150721 |
86 | ″ | ″ | https://doi.org/10.1007/s00704-015-1653-1 |
87 | ″ | schema:sdDatePublished | 2022-08-04T17:02 |
88 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
89 | ″ | schema:sdPublisher | Naa05c526cc4a478f979859636d0598ac |
90 | ″ | schema:url | https://doi.org/10.1007/s00704-015-1653-1 |
91 | ″ | sgo:license | sg:explorer/license/ |
92 | ″ | sgo:sdDataset | articles |
93 | ″ | rdf:type | schema:ScholarlyArticle |
94 | N035ecf2b4aaa49898daab2646c889fe0 | schema:volumeNumber | 127 |
95 | ″ | rdf:type | schema:PublicationVolume |
96 | N18be4b196fe149e7ada43197d80aeab2 | rdf:first | sg:person.011307530435.08 |
97 | ″ | rdf:rest | Na640bea2860b43b6a1168d26289b99cf |
98 | N1df357acb5f048f2bf4cdf29f21b6ab8 | schema:issueNumber | 3-4 |
99 | ″ | rdf:type | schema:PublicationIssue |
100 | N1f07524bfeb64ebb8627b5542ce69b19 | rdf:first | sg:person.014261602221.18 |
101 | ″ | rdf:rest | N58443bb8228446b59ac3c5021e144215 |
102 | N4a708f3777424bfeafe279b9020614e6 | schema:name | doi |
103 | ″ | schema:value | 10.1007/s00704-015-1653-1 |
104 | ″ | rdf:type | schema:PropertyValue |
105 | N58443bb8228446b59ac3c5021e144215 | rdf:first | sg:person.01222373430.82 |
106 | ″ | rdf:rest | N18be4b196fe149e7ada43197d80aeab2 |
107 | Na640bea2860b43b6a1168d26289b99cf | rdf:first | sg:person.011612742167.06 |
108 | ″ | rdf:rest | rdf:nil |
109 | Naa05c526cc4a478f979859636d0598ac | schema:name | Springer Nature - SN SciGraph project |
110 | ″ | rdf:type | schema:Organization |
111 | Nf9f0629c748d4b2b8b4d06e461181875 | schema:name | dimensions_id |
112 | ″ | schema:value | pub.1007150721 |
113 | ″ | rdf:type | schema:PropertyValue |
114 | anzsrc-for:04 | schema:inDefinedTermSet | anzsrc-for: |
115 | ″ | schema:name | Earth Sciences |
116 | ″ | rdf:type | schema:DefinedTerm |
117 | anzsrc-for:0401 | schema:inDefinedTermSet | anzsrc-for: |
118 | ″ | schema:name | Atmospheric Sciences |
119 | ″ | rdf:type | schema:DefinedTerm |
120 | sg:journal.1086664 | schema:issn | 0177-798X |
121 | ″ | ″ | 1434-4483 |
122 | ″ | schema:name | Theoretical and Applied Climatology |
123 | ″ | schema:publisher | Springer Nature |
124 | ″ | rdf:type | schema:Periodical |
125 | sg:person.011307530435.08 | schema:affiliation | grid-institutes:grid.10516.33 |
126 | ″ | schema:familyName | Ünal |
127 | ″ | schema:givenName | A. |
128 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011307530435.08 |
129 | ″ | rdf:type | schema:Person |
130 | sg:person.011612742167.06 | schema:affiliation | grid-institutes:grid.10516.33 |
131 | ″ | schema:familyName | Karaca |
132 | ″ | schema:givenName | M. |
133 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011612742167.06 |
134 | ″ | rdf:type | schema:Person |
135 | sg:person.01222373430.82 | schema:affiliation | grid-institutes:grid.10516.33 |
136 | ″ | schema:familyName | Kındap |
137 | ″ | schema:givenName | T. |
138 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01222373430.82 |
139 | ″ | rdf:type | schema:Person |
140 | sg:person.014261602221.18 | schema:affiliation | grid-institutes:None |
141 | ″ | schema:familyName | Baltacı |
142 | ″ | schema:givenName | H. |
143 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014261602221.18 |
144 | ″ | rdf:type | schema:Person |
145 | sg:pub.10.1007/s00703-010-0103-y | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1041727212 |
146 | ″ | ″ | https://doi.org/10.1007/s00703-010-0103-y |
147 | ″ | rdf:type | schema:CreativeWork |
148 | sg:pub.10.1007/s00704-011-0449-1 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1003170440 |
149 | ″ | ″ | https://doi.org/10.1007/s00704-011-0449-1 |
150 | ″ | rdf:type | schema:CreativeWork |
151 | grid-institutes:None | schema:alternateName | Turkish State Meteorological Service, Kütükçü Alibey Caddesi No.4, 06120, Ankara, Turkey |
152 | ″ | schema:name | Eurasia Institute of Earth Sciences, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey |
153 | ″ | ″ | Turkish State Meteorological Service, Kütükçü Alibey Caddesi No.4, 06120, Ankara, Turkey |
154 | ″ | rdf:type | schema:Organization |
155 | grid-institutes:grid.10516.33 | schema:alternateName | Eurasia Institute of Earth Sciences, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey |
156 | ″ | schema:name | Eurasia Institute of Earth Sciences, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey |
157 | ″ | rdf:type | schema:Organization |