Statistical bias correction for daily precipitation in regional climate models over Europe View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2009-04-29

AUTHORS

C. Piani, J. O. Haerter, E. Coppola

ABSTRACT

We design, apply, and validate a methodology for correcting climate model output to produce internally consistent fields that have the same statistical intensity distribution as the observations. We refer to this as a statistical bias correction. Validation of the methodology is carried out using daily precipitation fields, defined over Europe, from the ENSEMBLES climate model dataset. The bias correction is calculated using data from 1961 to 1970, without distinguishing between seasons, and applied to seasonal data from 1991 to 2000. This choice of time periods is made to maximize the lag between calibration and validation within the ERA40 reanalysis period. Results show that the method performs unexpectedly well. Not only are the mean and other moments of the intensity distribution improved, as expected, but so are a drought and a heavy precipitation index, which depend on the autocorrelation spectra. Given that the corrections were derived without seasonal distinction and are based solely on intensity distributions, a statistical quantity oblivious of temporal correlations, it is encouraging to find that the improvements are present even when seasons and temporal statistics are considered. This encourages the application of this method to multi-decadal climate projections. More... »

PAGES

187-192

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00704-009-0134-9

DOI

http://dx.doi.org/10.1007/s00704-009-0134-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1027965373


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atmospheric Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Abdus Salam, International Center for Theoretical Physics, Strada Costiera 11, 34014, Trieste, Italy", 
          "id": "http://www.grid.ac/institutes/grid.419330.c", 
          "name": [
            "Abdus Salam, International Center for Theoretical Physics, Strada Costiera 11, 34014, Trieste, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Piani", 
        "givenName": "C.", 
        "id": "sg:person.016370414215.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016370414215.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Meteorology, Bundesstr. 53, 20146, Hamburg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.450268.d", 
          "name": [
            "Max Planck Institute for Meteorology, Bundesstr. 53, 20146, Hamburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Haerter", 
        "givenName": "J. O.", 
        "id": "sg:person.013754575647.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013754575647.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Abdus Salam, International Center for Theoretical Physics, Strada Costiera 11, 34014, Trieste, Italy", 
          "id": "http://www.grid.ac/institutes/grid.419330.c", 
          "name": [
            "Abdus Salam, International Center for Theoretical Physics, Strada Costiera 11, 34014, Trieste, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Coppola", 
        "givenName": "E.", 
        "id": "sg:person.016342343575.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016342343575.77"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1023/b:clim.0000013685.99609.9e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019795211", 
          "https://doi.org/10.1023/b:clim.0000013685.99609.9e"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-04-29", 
    "datePublishedReg": "2009-04-29", 
    "description": "We design, apply, and validate a methodology for correcting climate model output to produce internally consistent fields that have the same statistical intensity distribution as the observations. We refer to this as a statistical bias correction. Validation of the methodology is carried out using daily precipitation fields, defined over Europe, from the ENSEMBLES climate model dataset. The bias correction is calculated using data from 1961 to 1970, without distinguishing between seasons, and applied to seasonal data from 1991 to 2000. This choice of time periods is made to maximize the lag between calibration and validation within the ERA40 reanalysis period. Results show that the method performs unexpectedly well. Not only are the mean and other moments of the intensity distribution improved, as expected, but so are a drought and a heavy precipitation index, which depend on the autocorrelation spectra. Given that the corrections were derived without seasonal distinction and are based solely on intensity distributions, a statistical quantity oblivious of temporal correlations, it is encouraging to find that the improvements are present even when seasons and temporal statistics are considered. This encourages the application of this method to multi-decadal climate projections.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00704-009-0134-9", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3764828", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1086664", 
        "issn": [
          "0177-798X", 
          "1434-4483"
        ], 
        "name": "Theoretical and Applied Climatology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1-2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "99"
      }
    ], 
    "keywords": [
      "statistical bias correction", 
      "bias correction", 
      "regional climate model", 
      "heavy precipitation indices", 
      "climate model output", 
      "daily precipitation fields", 
      "climate model datasets", 
      "climate models", 
      "precipitation fields", 
      "reanalysis period", 
      "climate projections", 
      "daily precipitation", 
      "Precipitation Index", 
      "statistical intensity distribution", 
      "intensity distribution", 
      "seasonal distinction", 
      "model output", 
      "statistical quantities", 
      "model datasets", 
      "seasonal data", 
      "temporal statistics", 
      "autocorrelation spectrum", 
      "consistent field", 
      "temporal correlation", 
      "season", 
      "time period", 
      "precipitation", 
      "drought", 
      "distribution", 
      "Europe", 
      "field", 
      "period", 
      "lag", 
      "correction", 
      "calibration", 
      "statistics", 
      "projections", 
      "data", 
      "moment", 
      "methodology", 
      "dataset", 
      "model", 
      "validation", 
      "applications", 
      "quantity", 
      "correlation", 
      "output", 
      "spectra", 
      "index", 
      "observations", 
      "choice", 
      "results", 
      "distinction", 
      "method", 
      "improvement"
    ], 
    "name": "Statistical bias correction for daily precipitation in regional climate models over Europe", 
    "pagination": "187-192", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1027965373"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00704-009-0134-9"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00704-009-0134-9", 
      "https://app.dimensions.ai/details/publication/pub.1027965373"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-06-01T22:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_490.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00704-009-0134-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00704-009-0134-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00704-009-0134-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00704-009-0134-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00704-009-0134-9'


 

This table displays all metadata directly associated to this object as RDF triples.

136 TRIPLES      22 PREDICATES      81 URIs      72 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00704-009-0134-9 schema:about anzsrc-for:04
2 anzsrc-for:0401
3 schema:author N2e40be9b21dc4558bfa7716ec9a81499
4 schema:citation sg:pub.10.1023/b:clim.0000013685.99609.9e
5 schema:datePublished 2009-04-29
6 schema:datePublishedReg 2009-04-29
7 schema:description We design, apply, and validate a methodology for correcting climate model output to produce internally consistent fields that have the same statistical intensity distribution as the observations. We refer to this as a statistical bias correction. Validation of the methodology is carried out using daily precipitation fields, defined over Europe, from the ENSEMBLES climate model dataset. The bias correction is calculated using data from 1961 to 1970, without distinguishing between seasons, and applied to seasonal data from 1991 to 2000. This choice of time periods is made to maximize the lag between calibration and validation within the ERA40 reanalysis period. Results show that the method performs unexpectedly well. Not only are the mean and other moments of the intensity distribution improved, as expected, but so are a drought and a heavy precipitation index, which depend on the autocorrelation spectra. Given that the corrections were derived without seasonal distinction and are based solely on intensity distributions, a statistical quantity oblivious of temporal correlations, it is encouraging to find that the improvements are present even when seasons and temporal statistics are considered. This encourages the application of this method to multi-decadal climate projections.
8 schema:genre article
9 schema:inLanguage en
10 schema:isAccessibleForFree true
11 schema:isPartOf N1cb23b1a3d204bf59fd2eeacebd11943
12 Nd5d98671562f43fa9b44b42295a29991
13 sg:journal.1086664
14 schema:keywords Europe
15 Precipitation Index
16 applications
17 autocorrelation spectrum
18 bias correction
19 calibration
20 choice
21 climate model datasets
22 climate model output
23 climate models
24 climate projections
25 consistent field
26 correction
27 correlation
28 daily precipitation
29 daily precipitation fields
30 data
31 dataset
32 distinction
33 distribution
34 drought
35 field
36 heavy precipitation indices
37 improvement
38 index
39 intensity distribution
40 lag
41 method
42 methodology
43 model
44 model datasets
45 model output
46 moment
47 observations
48 output
49 period
50 precipitation
51 precipitation fields
52 projections
53 quantity
54 reanalysis period
55 regional climate model
56 results
57 season
58 seasonal data
59 seasonal distinction
60 spectra
61 statistical bias correction
62 statistical intensity distribution
63 statistical quantities
64 statistics
65 temporal correlation
66 temporal statistics
67 time period
68 validation
69 schema:name Statistical bias correction for daily precipitation in regional climate models over Europe
70 schema:pagination 187-192
71 schema:productId N13a004dca13c435db67360f91bfce474
72 N72cf3c79c2e341d5834ad29009368afc
73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027965373
74 https://doi.org/10.1007/s00704-009-0134-9
75 schema:sdDatePublished 2022-06-01T22:06
76 schema:sdLicense https://scigraph.springernature.com/explorer/license/
77 schema:sdPublisher N7454a03341734501ae2cd9f9a2dbb3a5
78 schema:url https://doi.org/10.1007/s00704-009-0134-9
79 sgo:license sg:explorer/license/
80 sgo:sdDataset articles
81 rdf:type schema:ScholarlyArticle
82 N13a004dca13c435db67360f91bfce474 schema:name dimensions_id
83 schema:value pub.1027965373
84 rdf:type schema:PropertyValue
85 N1cb23b1a3d204bf59fd2eeacebd11943 schema:volumeNumber 99
86 rdf:type schema:PublicationVolume
87 N2e40be9b21dc4558bfa7716ec9a81499 rdf:first sg:person.016370414215.32
88 rdf:rest N8d265e821e65437d8643faa775d56861
89 N72cf3c79c2e341d5834ad29009368afc schema:name doi
90 schema:value 10.1007/s00704-009-0134-9
91 rdf:type schema:PropertyValue
92 N7454a03341734501ae2cd9f9a2dbb3a5 schema:name Springer Nature - SN SciGraph project
93 rdf:type schema:Organization
94 N8d265e821e65437d8643faa775d56861 rdf:first sg:person.013754575647.11
95 rdf:rest Nc5f7c274eb9f449a93127227943f087a
96 Nc5f7c274eb9f449a93127227943f087a rdf:first sg:person.016342343575.77
97 rdf:rest rdf:nil
98 Nd5d98671562f43fa9b44b42295a29991 schema:issueNumber 1-2
99 rdf:type schema:PublicationIssue
100 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
101 schema:name Earth Sciences
102 rdf:type schema:DefinedTerm
103 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
104 schema:name Atmospheric Sciences
105 rdf:type schema:DefinedTerm
106 sg:grant.3764828 http://pending.schema.org/fundedItem sg:pub.10.1007/s00704-009-0134-9
107 rdf:type schema:MonetaryGrant
108 sg:journal.1086664 schema:issn 0177-798X
109 1434-4483
110 schema:name Theoretical and Applied Climatology
111 schema:publisher Springer Nature
112 rdf:type schema:Periodical
113 sg:person.013754575647.11 schema:affiliation grid-institutes:grid.450268.d
114 schema:familyName Haerter
115 schema:givenName J. O.
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013754575647.11
117 rdf:type schema:Person
118 sg:person.016342343575.77 schema:affiliation grid-institutes:grid.419330.c
119 schema:familyName Coppola
120 schema:givenName E.
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016342343575.77
122 rdf:type schema:Person
123 sg:person.016370414215.32 schema:affiliation grid-institutes:grid.419330.c
124 schema:familyName Piani
125 schema:givenName C.
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016370414215.32
127 rdf:type schema:Person
128 sg:pub.10.1023/b:clim.0000013685.99609.9e schema:sameAs https://app.dimensions.ai/details/publication/pub.1019795211
129 https://doi.org/10.1023/b:clim.0000013685.99609.9e
130 rdf:type schema:CreativeWork
131 grid-institutes:grid.419330.c schema:alternateName Abdus Salam, International Center for Theoretical Physics, Strada Costiera 11, 34014, Trieste, Italy
132 schema:name Abdus Salam, International Center for Theoretical Physics, Strada Costiera 11, 34014, Trieste, Italy
133 rdf:type schema:Organization
134 grid-institutes:grid.450268.d schema:alternateName Max Planck Institute for Meteorology, Bundesstr. 53, 20146, Hamburg, Germany
135 schema:name Max Planck Institute for Meteorology, Bundesstr. 53, 20146, Hamburg, Germany
136 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...