Ontology type: schema:ScholarlyArticle Open Access: True
2009-04-29
AUTHORSC. Piani, J. O. Haerter, E. Coppola
ABSTRACTWe design, apply, and validate a methodology for correcting climate model output to produce internally consistent fields that have the same statistical intensity distribution as the observations. We refer to this as a statistical bias correction. Validation of the methodology is carried out using daily precipitation fields, defined over Europe, from the ENSEMBLES climate model dataset. The bias correction is calculated using data from 1961 to 1970, without distinguishing between seasons, and applied to seasonal data from 1991 to 2000. This choice of time periods is made to maximize the lag between calibration and validation within the ERA40 reanalysis period. Results show that the method performs unexpectedly well. Not only are the mean and other moments of the intensity distribution improved, as expected, but so are a drought and a heavy precipitation index, which depend on the autocorrelation spectra. Given that the corrections were derived without seasonal distinction and are based solely on intensity distributions, a statistical quantity oblivious of temporal correlations, it is encouraging to find that the improvements are present even when seasons and temporal statistics are considered. This encourages the application of this method to multi-decadal climate projections. More... »
PAGES187-192
http://scigraph.springernature.com/pub.10.1007/s00704-009-0134-9
DOIhttp://dx.doi.org/10.1007/s00704-009-0134-9
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1027965373
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Earth Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Atmospheric Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Abdus Salam, International Center for Theoretical Physics, Strada Costiera 11, 34014, Trieste, Italy",
"id": "http://www.grid.ac/institutes/grid.419330.c",
"name": [
"Abdus Salam, International Center for Theoretical Physics, Strada Costiera 11, 34014, Trieste, Italy"
],
"type": "Organization"
},
"familyName": "Piani",
"givenName": "C.",
"id": "sg:person.016370414215.32",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016370414215.32"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Max Planck Institute for Meteorology, Bundesstr. 53, 20146, Hamburg, Germany",
"id": "http://www.grid.ac/institutes/grid.450268.d",
"name": [
"Max Planck Institute for Meteorology, Bundesstr. 53, 20146, Hamburg, Germany"
],
"type": "Organization"
},
"familyName": "Haerter",
"givenName": "J. O.",
"id": "sg:person.013754575647.11",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013754575647.11"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Abdus Salam, International Center for Theoretical Physics, Strada Costiera 11, 34014, Trieste, Italy",
"id": "http://www.grid.ac/institutes/grid.419330.c",
"name": [
"Abdus Salam, International Center for Theoretical Physics, Strada Costiera 11, 34014, Trieste, Italy"
],
"type": "Organization"
},
"familyName": "Coppola",
"givenName": "E.",
"id": "sg:person.016342343575.77",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016342343575.77"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1023/b:clim.0000013685.99609.9e",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1019795211",
"https://doi.org/10.1023/b:clim.0000013685.99609.9e"
],
"type": "CreativeWork"
}
],
"datePublished": "2009-04-29",
"datePublishedReg": "2009-04-29",
"description": "We design, apply, and validate a methodology for correcting climate model output to produce internally consistent fields that have the same statistical intensity distribution as the observations. We refer to this as a statistical bias correction. Validation of the methodology is carried out using daily precipitation fields, defined over Europe, from the ENSEMBLES climate model dataset. The bias correction is calculated using data from 1961 to 1970, without distinguishing between seasons, and applied to seasonal data from 1991 to 2000. This choice of time periods is made to maximize the lag between calibration and validation within the ERA40 reanalysis period. Results show that the method performs unexpectedly well. Not only are the mean and other moments of the intensity distribution improved, as expected, but so are a drought and a heavy precipitation index, which depend on the autocorrelation spectra. Given that the corrections were derived without seasonal distinction and are based solely on intensity distributions, a statistical quantity oblivious of temporal correlations, it is encouraging to find that the improvements are present even when seasons and temporal statistics are considered. This encourages the application of this method to multi-decadal climate projections.",
"genre": "article",
"id": "sg:pub.10.1007/s00704-009-0134-9",
"inLanguage": "en",
"isAccessibleForFree": true,
"isFundedItemOf": [
{
"id": "sg:grant.3764828",
"type": "MonetaryGrant"
}
],
"isPartOf": [
{
"id": "sg:journal.1086664",
"issn": [
"0177-798X",
"1434-4483"
],
"name": "Theoretical and Applied Climatology",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "1-2",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "99"
}
],
"keywords": [
"statistical bias correction",
"bias correction",
"regional climate model",
"heavy precipitation indices",
"climate model output",
"daily precipitation fields",
"climate model datasets",
"climate models",
"precipitation fields",
"reanalysis period",
"climate projections",
"daily precipitation",
"Precipitation Index",
"statistical intensity distribution",
"intensity distribution",
"seasonal distinction",
"model output",
"statistical quantities",
"model datasets",
"seasonal data",
"temporal statistics",
"autocorrelation spectrum",
"consistent field",
"temporal correlation",
"season",
"time period",
"precipitation",
"drought",
"distribution",
"Europe",
"field",
"period",
"lag",
"correction",
"calibration",
"statistics",
"projections",
"data",
"moment",
"methodology",
"dataset",
"model",
"validation",
"applications",
"quantity",
"correlation",
"output",
"spectra",
"index",
"observations",
"choice",
"results",
"distinction",
"method",
"improvement"
],
"name": "Statistical bias correction for daily precipitation in regional climate models over Europe",
"pagination": "187-192",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1027965373"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s00704-009-0134-9"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s00704-009-0134-9",
"https://app.dimensions.ai/details/publication/pub.1027965373"
],
"sdDataset": "articles",
"sdDatePublished": "2022-06-01T22:06",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_490.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s00704-009-0134-9"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00704-009-0134-9'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00704-009-0134-9'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00704-009-0134-9'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00704-009-0134-9'
This table displays all metadata directly associated to this object as RDF triples.
136 TRIPLES
22 PREDICATES
81 URIs
72 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s00704-009-0134-9 | schema:about | anzsrc-for:04 |
2 | ″ | ″ | anzsrc-for:0401 |
3 | ″ | schema:author | N2e40be9b21dc4558bfa7716ec9a81499 |
4 | ″ | schema:citation | sg:pub.10.1023/b:clim.0000013685.99609.9e |
5 | ″ | schema:datePublished | 2009-04-29 |
6 | ″ | schema:datePublishedReg | 2009-04-29 |
7 | ″ | schema:description | We design, apply, and validate a methodology for correcting climate model output to produce internally consistent fields that have the same statistical intensity distribution as the observations. We refer to this as a statistical bias correction. Validation of the methodology is carried out using daily precipitation fields, defined over Europe, from the ENSEMBLES climate model dataset. The bias correction is calculated using data from 1961 to 1970, without distinguishing between seasons, and applied to seasonal data from 1991 to 2000. This choice of time periods is made to maximize the lag between calibration and validation within the ERA40 reanalysis period. Results show that the method performs unexpectedly well. Not only are the mean and other moments of the intensity distribution improved, as expected, but so are a drought and a heavy precipitation index, which depend on the autocorrelation spectra. Given that the corrections were derived without seasonal distinction and are based solely on intensity distributions, a statistical quantity oblivious of temporal correlations, it is encouraging to find that the improvements are present even when seasons and temporal statistics are considered. This encourages the application of this method to multi-decadal climate projections. |
8 | ″ | schema:genre | article |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | true |
11 | ″ | schema:isPartOf | N1cb23b1a3d204bf59fd2eeacebd11943 |
12 | ″ | ″ | Nd5d98671562f43fa9b44b42295a29991 |
13 | ″ | ″ | sg:journal.1086664 |
14 | ″ | schema:keywords | Europe |
15 | ″ | ″ | Precipitation Index |
16 | ″ | ″ | applications |
17 | ″ | ″ | autocorrelation spectrum |
18 | ″ | ″ | bias correction |
19 | ″ | ″ | calibration |
20 | ″ | ″ | choice |
21 | ″ | ″ | climate model datasets |
22 | ″ | ″ | climate model output |
23 | ″ | ″ | climate models |
24 | ″ | ″ | climate projections |
25 | ″ | ″ | consistent field |
26 | ″ | ″ | correction |
27 | ″ | ″ | correlation |
28 | ″ | ″ | daily precipitation |
29 | ″ | ″ | daily precipitation fields |
30 | ″ | ″ | data |
31 | ″ | ″ | dataset |
32 | ″ | ″ | distinction |
33 | ″ | ″ | distribution |
34 | ″ | ″ | drought |
35 | ″ | ″ | field |
36 | ″ | ″ | heavy precipitation indices |
37 | ″ | ″ | improvement |
38 | ″ | ″ | index |
39 | ″ | ″ | intensity distribution |
40 | ″ | ″ | lag |
41 | ″ | ″ | method |
42 | ″ | ″ | methodology |
43 | ″ | ″ | model |
44 | ″ | ″ | model datasets |
45 | ″ | ″ | model output |
46 | ″ | ″ | moment |
47 | ″ | ″ | observations |
48 | ″ | ″ | output |
49 | ″ | ″ | period |
50 | ″ | ″ | precipitation |
51 | ″ | ″ | precipitation fields |
52 | ″ | ″ | projections |
53 | ″ | ″ | quantity |
54 | ″ | ″ | reanalysis period |
55 | ″ | ″ | regional climate model |
56 | ″ | ″ | results |
57 | ″ | ″ | season |
58 | ″ | ″ | seasonal data |
59 | ″ | ″ | seasonal distinction |
60 | ″ | ″ | spectra |
61 | ″ | ″ | statistical bias correction |
62 | ″ | ″ | statistical intensity distribution |
63 | ″ | ″ | statistical quantities |
64 | ″ | ″ | statistics |
65 | ″ | ″ | temporal correlation |
66 | ″ | ″ | temporal statistics |
67 | ″ | ″ | time period |
68 | ″ | ″ | validation |
69 | ″ | schema:name | Statistical bias correction for daily precipitation in regional climate models over Europe |
70 | ″ | schema:pagination | 187-192 |
71 | ″ | schema:productId | N13a004dca13c435db67360f91bfce474 |
72 | ″ | ″ | N72cf3c79c2e341d5834ad29009368afc |
73 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1027965373 |
74 | ″ | ″ | https://doi.org/10.1007/s00704-009-0134-9 |
75 | ″ | schema:sdDatePublished | 2022-06-01T22:06 |
76 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
77 | ″ | schema:sdPublisher | N7454a03341734501ae2cd9f9a2dbb3a5 |
78 | ″ | schema:url | https://doi.org/10.1007/s00704-009-0134-9 |
79 | ″ | sgo:license | sg:explorer/license/ |
80 | ″ | sgo:sdDataset | articles |
81 | ″ | rdf:type | schema:ScholarlyArticle |
82 | N13a004dca13c435db67360f91bfce474 | schema:name | dimensions_id |
83 | ″ | schema:value | pub.1027965373 |
84 | ″ | rdf:type | schema:PropertyValue |
85 | N1cb23b1a3d204bf59fd2eeacebd11943 | schema:volumeNumber | 99 |
86 | ″ | rdf:type | schema:PublicationVolume |
87 | N2e40be9b21dc4558bfa7716ec9a81499 | rdf:first | sg:person.016370414215.32 |
88 | ″ | rdf:rest | N8d265e821e65437d8643faa775d56861 |
89 | N72cf3c79c2e341d5834ad29009368afc | schema:name | doi |
90 | ″ | schema:value | 10.1007/s00704-009-0134-9 |
91 | ″ | rdf:type | schema:PropertyValue |
92 | N7454a03341734501ae2cd9f9a2dbb3a5 | schema:name | Springer Nature - SN SciGraph project |
93 | ″ | rdf:type | schema:Organization |
94 | N8d265e821e65437d8643faa775d56861 | rdf:first | sg:person.013754575647.11 |
95 | ″ | rdf:rest | Nc5f7c274eb9f449a93127227943f087a |
96 | Nc5f7c274eb9f449a93127227943f087a | rdf:first | sg:person.016342343575.77 |
97 | ″ | rdf:rest | rdf:nil |
98 | Nd5d98671562f43fa9b44b42295a29991 | schema:issueNumber | 1-2 |
99 | ″ | rdf:type | schema:PublicationIssue |
100 | anzsrc-for:04 | schema:inDefinedTermSet | anzsrc-for: |
101 | ″ | schema:name | Earth Sciences |
102 | ″ | rdf:type | schema:DefinedTerm |
103 | anzsrc-for:0401 | schema:inDefinedTermSet | anzsrc-for: |
104 | ″ | schema:name | Atmospheric Sciences |
105 | ″ | rdf:type | schema:DefinedTerm |
106 | sg:grant.3764828 | http://pending.schema.org/fundedItem | sg:pub.10.1007/s00704-009-0134-9 |
107 | ″ | rdf:type | schema:MonetaryGrant |
108 | sg:journal.1086664 | schema:issn | 0177-798X |
109 | ″ | ″ | 1434-4483 |
110 | ″ | schema:name | Theoretical and Applied Climatology |
111 | ″ | schema:publisher | Springer Nature |
112 | ″ | rdf:type | schema:Periodical |
113 | sg:person.013754575647.11 | schema:affiliation | grid-institutes:grid.450268.d |
114 | ″ | schema:familyName | Haerter |
115 | ″ | schema:givenName | J. O. |
116 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013754575647.11 |
117 | ″ | rdf:type | schema:Person |
118 | sg:person.016342343575.77 | schema:affiliation | grid-institutes:grid.419330.c |
119 | ″ | schema:familyName | Coppola |
120 | ″ | schema:givenName | E. |
121 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016342343575.77 |
122 | ″ | rdf:type | schema:Person |
123 | sg:person.016370414215.32 | schema:affiliation | grid-institutes:grid.419330.c |
124 | ″ | schema:familyName | Piani |
125 | ″ | schema:givenName | C. |
126 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016370414215.32 |
127 | ″ | rdf:type | schema:Person |
128 | sg:pub.10.1023/b:clim.0000013685.99609.9e | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1019795211 |
129 | ″ | ″ | https://doi.org/10.1023/b:clim.0000013685.99609.9e |
130 | ″ | rdf:type | schema:CreativeWork |
131 | grid-institutes:grid.419330.c | schema:alternateName | Abdus Salam, International Center for Theoretical Physics, Strada Costiera 11, 34014, Trieste, Italy |
132 | ″ | schema:name | Abdus Salam, International Center for Theoretical Physics, Strada Costiera 11, 34014, Trieste, Italy |
133 | ″ | rdf:type | schema:Organization |
134 | grid-institutes:grid.450268.d | schema:alternateName | Max Planck Institute for Meteorology, Bundesstr. 53, 20146, Hamburg, Germany |
135 | ″ | schema:name | Max Planck Institute for Meteorology, Bundesstr. 53, 20146, Hamburg, Germany |
136 | ″ | rdf:type | schema:Organization |