A new prediction model of daily weather elements in Hainan province under the typhoon weather View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Ruixu Zhou, Wensheng Gao, Bowen Zhang, Qinzhu Chen, Yafeng Liang, Dong Yao, Laijun Han, Xinzheng Liao, Ruihai Li

ABSTRACT

This paper proposes a new prediction model for severe natural disasters, especially typhoon using daily weather analysis. Hainan province in China is selected to be a typical application region, where natural disasters, especially typhoons take place frequently. These disasters have great impacts on the life and property safety of the residents, and therefore are in specific need of accurate prediction. A new prediction model of daily weather in Hainan province under the typhoon weather is proposed in this paper based on the best track datasets of typhoons and the corresponding daily weather data. This model utilizes the statistical methods and data mining technology in combination with the dynamic migration information of tropical cyclones and can provide the dynamic prediction of daily weather elements in any designated location. Three surface meteorological observation stations of Hainan province during the years 1951–1920 are used to test the model. Test results show that the prediction equations established for the vast majority of daily weather elements have passed the significant test. Besides, Typhoon Damrey is used as a case to illustrate the whole daily weather prediction model in detail and comparisons between the model and other official forecast (such as JTWC, UKMO and CMA) are performed thoroughly. It is worth noting that the model proposed in this paper is not limited to Hainan province and can be generalized to other areas in the world. More... »

PAGES

137-156

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00703-017-0567-0

DOI

http://dx.doi.org/10.1007/s00703-017-0567-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1092593361


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atmospheric Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Tsinghua University", 
          "id": "https://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "Department of Electrical Engineering, Tsinghua University, 100084, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhou", 
        "givenName": "Ruixu", 
        "id": "sg:person.07503372313.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07503372313.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tsinghua University", 
          "id": "https://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "Department of Electrical Engineering, Tsinghua University, 100084, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gao", 
        "givenName": "Wensheng", 
        "id": "sg:person.015052312272.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015052312272.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "State Grid Corporation of China (China)", 
          "id": "https://www.grid.ac/institutes/grid.433158.8", 
          "name": [
            "China Electric Power Research Institute, 100192, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Bowen", 
        "id": "sg:person.011076333313.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011076333313.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Hainan Power Grid Corporation, 570203, Haikou, Hainan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Qinzhu", 
        "id": "sg:person.012471274313.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012471274313.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Hainan Power Grid Corporation, 570203, Haikou, Hainan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liang", 
        "givenName": "Yafeng", 
        "id": "sg:person.014064235313.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014064235313.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Hainan Power Grid Corporation, 570203, Haikou, Hainan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yao", 
        "givenName": "Dong", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Hainan Power Grid Corporation, 570203, Haikou, Hainan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Han", 
        "givenName": "Laijun", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Electric Power Research Institute of China South Power Grid International Co., Ltd, 510080, Guangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liao", 
        "givenName": "Xinzheng", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Electric Power Research Institute of China South Power Grid International Co., Ltd, 510080, Guangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Ruihai", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1155/2014/735491", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004689579"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ins.2007.05.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004973900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0196-8904(02)00236-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006020957"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0196-8904(02)00236-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006020957"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-30160-0_9698", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006395551", 
          "https://doi.org/10.1007/978-0-387-30160-0_9698"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2010.09.067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015131545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apenergy.2009.05.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015256395"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atmosres.2014.01.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022453936"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0925-2312(01)00620-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027204163"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2014/717803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028095159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2015.03.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035297973"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jtech-d-12-00119.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036233440"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atmosres.2015.01.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037976592"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2014/203545", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042123589"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.energy.2011.02.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045931124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.enbuild.2011.02.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047681413"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.renene.2015.03.071", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052239362"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00521-010-0363-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053133935", 
          "https://doi.org/10.1007/s00521-010-0363-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00401706.1971.10488811", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058284300"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tec.2003.821865", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061588867"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/igarss.2004.1370042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094233191"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icmt.2011.6002598", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094395430"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/cp.2012.1822", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098715527"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "This paper proposes a new prediction model for severe natural disasters, especially typhoon using daily weather analysis. Hainan province in China is selected to be a typical application region, where natural disasters, especially typhoons take place frequently. These disasters have great impacts on the life and property safety of the residents, and therefore are in specific need of accurate prediction. A new prediction model of daily weather in Hainan province under the typhoon weather is proposed in this paper based on the best track datasets of typhoons and the corresponding daily weather data. This model utilizes the statistical methods and data mining technology in combination with the dynamic migration information of tropical cyclones and can provide the dynamic prediction of daily weather elements in any designated location. Three surface meteorological observation stations of Hainan province during the years 1951\u20131920 are used to test the model. Test results show that the prediction equations established for the vast majority of daily weather elements have passed the significant test. Besides, Typhoon Damrey is used as a case to illustrate the whole daily weather prediction model in detail and comparisons between the model and other official forecast (such as JTWC, UKMO and CMA) are performed thoroughly. It is worth noting that the model proposed in this paper is not limited to Hainan province and can be generalized to other areas in the world.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00703-017-0567-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1271293", 
        "issn": [
          "0177-7971", 
          "1436-5065"
        ], 
        "name": "Meteorology and Atmospheric Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "131"
      }
    ], 
    "name": "A new prediction model of daily weather elements in Hainan province under the typhoon weather", 
    "pagination": "137-156", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ada7bdac6ef60ab6612e2948e68921430cf05501659a44f227974e368f89d4fa"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00703-017-0567-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1092593361"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00703-017-0567-0", 
      "https://app.dimensions.ai/details/publication/pub.1092593361"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78953_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00703-017-0567-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00703-017-0567-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00703-017-0567-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00703-017-0567-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00703-017-0567-0'


 

This table displays all metadata directly associated to this object as RDF triples.

196 TRIPLES      21 PREDICATES      49 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00703-017-0567-0 schema:about anzsrc-for:04
2 anzsrc-for:0401
3 schema:author N468066be3c4e468d8759f6d3eb93d21f
4 schema:citation sg:pub.10.1007/978-0-387-30160-0_9698
5 sg:pub.10.1007/s00521-010-0363-y
6 https://doi.org/10.1016/j.apenergy.2009.05.026
7 https://doi.org/10.1016/j.atmosres.2014.01.012
8 https://doi.org/10.1016/j.atmosres.2015.01.004
9 https://doi.org/10.1016/j.enbuild.2011.02.007
10 https://doi.org/10.1016/j.energy.2011.02.008
11 https://doi.org/10.1016/j.eswa.2010.09.067
12 https://doi.org/10.1016/j.ins.2007.05.024
13 https://doi.org/10.1016/j.neucom.2015.03.027
14 https://doi.org/10.1016/j.renene.2015.03.071
15 https://doi.org/10.1016/s0196-8904(02)00236-4
16 https://doi.org/10.1016/s0925-2312(01)00620-8
17 https://doi.org/10.1049/cp.2012.1822
18 https://doi.org/10.1080/00401706.1971.10488811
19 https://doi.org/10.1109/icmt.2011.6002598
20 https://doi.org/10.1109/igarss.2004.1370042
21 https://doi.org/10.1109/tec.2003.821865
22 https://doi.org/10.1155/2014/203545
23 https://doi.org/10.1155/2014/717803
24 https://doi.org/10.1155/2014/735491
25 https://doi.org/10.1175/jtech-d-12-00119.1
26 schema:datePublished 2019-04
27 schema:datePublishedReg 2019-04-01
28 schema:description This paper proposes a new prediction model for severe natural disasters, especially typhoon using daily weather analysis. Hainan province in China is selected to be a typical application region, where natural disasters, especially typhoons take place frequently. These disasters have great impacts on the life and property safety of the residents, and therefore are in specific need of accurate prediction. A new prediction model of daily weather in Hainan province under the typhoon weather is proposed in this paper based on the best track datasets of typhoons and the corresponding daily weather data. This model utilizes the statistical methods and data mining technology in combination with the dynamic migration information of tropical cyclones and can provide the dynamic prediction of daily weather elements in any designated location. Three surface meteorological observation stations of Hainan province during the years 1951–1920 are used to test the model. Test results show that the prediction equations established for the vast majority of daily weather elements have passed the significant test. Besides, Typhoon Damrey is used as a case to illustrate the whole daily weather prediction model in detail and comparisons between the model and other official forecast (such as JTWC, UKMO and CMA) are performed thoroughly. It is worth noting that the model proposed in this paper is not limited to Hainan province and can be generalized to other areas in the world.
29 schema:genre research_article
30 schema:inLanguage en
31 schema:isAccessibleForFree false
32 schema:isPartOf Ne12fcc8a197a421c9527bf1a55799380
33 Nf1966bdf076b4e4f99d460fce63f51d4
34 sg:journal.1271293
35 schema:name A new prediction model of daily weather elements in Hainan province under the typhoon weather
36 schema:pagination 137-156
37 schema:productId N5c1ddcd3b4c1460184c19fc2a26779d6
38 N8ae35c04339a4dde82251d91c7297dfc
39 Nd60b50af8703468ea06d883ec7e2bd38
40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092593361
41 https://doi.org/10.1007/s00703-017-0567-0
42 schema:sdDatePublished 2019-04-11T13:19
43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
44 schema:sdPublisher N5c775e689fdf4ab698537f654512bd07
45 schema:url https://link.springer.com/10.1007%2Fs00703-017-0567-0
46 sgo:license sg:explorer/license/
47 sgo:sdDataset articles
48 rdf:type schema:ScholarlyArticle
49 N09d972fe9cf041b18406d2a65b3501cd rdf:first N8bd77f39337b43738c56fd522e68e2d6
50 rdf:rest rdf:nil
51 N1bf986a550ad469488db4db5746f39f8 rdf:first Ne4445bd493c045d9a75f4d22be05e431
52 rdf:rest N712d293e93314670954b810ed625a71f
53 N1f1c1cbc77014dd88f35eab59f3ab32e rdf:first sg:person.014064235313.94
54 rdf:rest N1bf986a550ad469488db4db5746f39f8
55 N312af1effa024e5a9a1f49f7f0000698 schema:name Hainan Power Grid Corporation, 570203, Haikou, Hainan, China
56 rdf:type schema:Organization
57 N31e093a7bea646ceae1f41e51c81899f schema:affiliation N634318fb1242418c9279e8dacf2ff32e
58 schema:familyName Han
59 schema:givenName Laijun
60 rdf:type schema:Person
61 N46465f96d1884c4baf6a14503ba473a6 schema:name Hainan Power Grid Corporation, 570203, Haikou, Hainan, China
62 rdf:type schema:Organization
63 N468066be3c4e468d8759f6d3eb93d21f rdf:first sg:person.07503372313.95
64 rdf:rest Na8ca50bd95b1418bbb23cec7134f5556
65 N5c1ddcd3b4c1460184c19fc2a26779d6 schema:name doi
66 schema:value 10.1007/s00703-017-0567-0
67 rdf:type schema:PropertyValue
68 N5c775e689fdf4ab698537f654512bd07 schema:name Springer Nature - SN SciGraph project
69 rdf:type schema:Organization
70 N634318fb1242418c9279e8dacf2ff32e schema:name Hainan Power Grid Corporation, 570203, Haikou, Hainan, China
71 rdf:type schema:Organization
72 N712d293e93314670954b810ed625a71f rdf:first N31e093a7bea646ceae1f41e51c81899f
73 rdf:rest Na8c10289b25f441babf82ec06fbba653
74 N7a217365188a487fa018b963c4f05e35 rdf:first sg:person.011076333313.33
75 rdf:rest N90c98e050d54470cb09dfcf2e9194c95
76 N84426d7175924d59a179b3308fdc67e3 schema:name Electric Power Research Institute of China South Power Grid International Co., Ltd, 510080, Guangzhou, China
77 rdf:type schema:Organization
78 N863bbe4a05c141eb996b2e4dc759631d schema:name Electric Power Research Institute of China South Power Grid International Co., Ltd, 510080, Guangzhou, China
79 rdf:type schema:Organization
80 N8ae35c04339a4dde82251d91c7297dfc schema:name dimensions_id
81 schema:value pub.1092593361
82 rdf:type schema:PropertyValue
83 N8bd77f39337b43738c56fd522e68e2d6 schema:affiliation N863bbe4a05c141eb996b2e4dc759631d
84 schema:familyName Li
85 schema:givenName Ruihai
86 rdf:type schema:Person
87 N90c98e050d54470cb09dfcf2e9194c95 rdf:first sg:person.012471274313.69
88 rdf:rest N1f1c1cbc77014dd88f35eab59f3ab32e
89 Na8c10289b25f441babf82ec06fbba653 rdf:first Nee5ab355d00548e9bc2fc93f64d4a3c5
90 rdf:rest N09d972fe9cf041b18406d2a65b3501cd
91 Na8ca50bd95b1418bbb23cec7134f5556 rdf:first sg:person.015052312272.71
92 rdf:rest N7a217365188a487fa018b963c4f05e35
93 Nd60b50af8703468ea06d883ec7e2bd38 schema:name readcube_id
94 schema:value ada7bdac6ef60ab6612e2948e68921430cf05501659a44f227974e368f89d4fa
95 rdf:type schema:PropertyValue
96 Ne00ec3cddec34413818a010c471a05b4 schema:name Hainan Power Grid Corporation, 570203, Haikou, Hainan, China
97 rdf:type schema:Organization
98 Ne12fcc8a197a421c9527bf1a55799380 schema:issueNumber 2
99 rdf:type schema:PublicationIssue
100 Ne4445bd493c045d9a75f4d22be05e431 schema:affiliation Ne00ec3cddec34413818a010c471a05b4
101 schema:familyName Yao
102 schema:givenName Dong
103 rdf:type schema:Person
104 Nee5ab355d00548e9bc2fc93f64d4a3c5 schema:affiliation N84426d7175924d59a179b3308fdc67e3
105 schema:familyName Liao
106 schema:givenName Xinzheng
107 rdf:type schema:Person
108 Nf1966bdf076b4e4f99d460fce63f51d4 schema:volumeNumber 131
109 rdf:type schema:PublicationVolume
110 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
111 schema:name Earth Sciences
112 rdf:type schema:DefinedTerm
113 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
114 schema:name Atmospheric Sciences
115 rdf:type schema:DefinedTerm
116 sg:journal.1271293 schema:issn 0177-7971
117 1436-5065
118 schema:name Meteorology and Atmospheric Physics
119 rdf:type schema:Periodical
120 sg:person.011076333313.33 schema:affiliation https://www.grid.ac/institutes/grid.433158.8
121 schema:familyName Zhang
122 schema:givenName Bowen
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011076333313.33
124 rdf:type schema:Person
125 sg:person.012471274313.69 schema:affiliation N46465f96d1884c4baf6a14503ba473a6
126 schema:familyName Chen
127 schema:givenName Qinzhu
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012471274313.69
129 rdf:type schema:Person
130 sg:person.014064235313.94 schema:affiliation N312af1effa024e5a9a1f49f7f0000698
131 schema:familyName Liang
132 schema:givenName Yafeng
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014064235313.94
134 rdf:type schema:Person
135 sg:person.015052312272.71 schema:affiliation https://www.grid.ac/institutes/grid.12527.33
136 schema:familyName Gao
137 schema:givenName Wensheng
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015052312272.71
139 rdf:type schema:Person
140 sg:person.07503372313.95 schema:affiliation https://www.grid.ac/institutes/grid.12527.33
141 schema:familyName Zhou
142 schema:givenName Ruixu
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07503372313.95
144 rdf:type schema:Person
145 sg:pub.10.1007/978-0-387-30160-0_9698 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006395551
146 https://doi.org/10.1007/978-0-387-30160-0_9698
147 rdf:type schema:CreativeWork
148 sg:pub.10.1007/s00521-010-0363-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1053133935
149 https://doi.org/10.1007/s00521-010-0363-y
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.apenergy.2009.05.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015256395
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.atmosres.2014.01.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022453936
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.atmosres.2015.01.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037976592
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.enbuild.2011.02.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047681413
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.energy.2011.02.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045931124
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/j.eswa.2010.09.067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015131545
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/j.ins.2007.05.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004973900
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/j.neucom.2015.03.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035297973
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/j.renene.2015.03.071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052239362
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/s0196-8904(02)00236-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006020957
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/s0925-2312(01)00620-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027204163
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1049/cp.2012.1822 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098715527
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1080/00401706.1971.10488811 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058284300
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1109/icmt.2011.6002598 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094395430
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1109/igarss.2004.1370042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094233191
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1109/tec.2003.821865 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061588867
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1155/2014/203545 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042123589
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1155/2014/717803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028095159
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1155/2014/735491 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004689579
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1175/jtech-d-12-00119.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036233440
190 rdf:type schema:CreativeWork
191 https://www.grid.ac/institutes/grid.12527.33 schema:alternateName Tsinghua University
192 schema:name Department of Electrical Engineering, Tsinghua University, 100084, Beijing, China
193 rdf:type schema:Organization
194 https://www.grid.ac/institutes/grid.433158.8 schema:alternateName State Grid Corporation of China (China)
195 schema:name China Electric Power Research Institute, 100192, Beijing, China
196 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...