Augmented reality visualization in brain lesions: a prospective randomized controlled evaluation of its potential and current limitations in navigated microneurosurgery View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-12-13

AUTHORS

Anna L. Roethe, Judith Rösler, Martin Misch, Peter Vajkoczy, Thomas Picht

ABSTRACT

BackgroundAugmented reality (AR) has the potential to support complex neurosurgical interventions by including visual information seamlessly. This study examines intraoperative visualization parameters and clinical impact of AR in brain tumor surgery.MethodsFifty-five intracranial lesions, operated either with AR-navigated microscope (n = 39) or conventional neuronavigation (n = 16) after randomization, have been included prospectively. Surgical resection time, duration/type/mode of AR, displayed objects (n, type), pointer-based navigation checks (n), usability of control, quality indicators, and overall surgical usefulness of AR have been assessed.ResultsAR display has been used in 44.4% of resection time. Predominant AR type was navigation view (75.7%), followed by target volumes (20.1%). Predominant AR mode was picture-in-picture (PiP) (72.5%), followed by 23.3% overlay display. In 43.6% of cases, vision of important anatomical structures has been partially or entirely blocked by AR information. A total of 7.7% of cases used MRI navigation only, 30.8% used one, 23.1% used two, and 38.5% used three or more object segmentations in AR navigation. A total of 66.7% of surgeons found AR visualization helpful in the individual surgical case. AR depth information and accuracy have been rated acceptable (median 3.0 vs. median 5.0 in conventional neuronavigation). The mean utilization of the navigation pointer was 2.6 × /resection hour (AR) vs. 9.7 × /resection hour (neuronavigation); navigation effort was significantly reduced in AR (P < 0.001).ConclusionsThe main benefit of HUD-based AR visualization in brain tumor surgery is the integrated continuous display allowing for pointer-less navigation. Navigation view (PiP) provides the highest usability while blocking the operative field less frequently. Visualization quality will benefit from improvements in registration accuracy and depth impression.German clinical trials registration number.DRKS00016955. More... »

PAGES

3-14

References to SciGraph publications

  • 2016-05-07. Augmented reality in neurosurgery: a systematic review in NEUROSURGICAL REVIEW
  • 2015-02-26. Augmented reality in neurovascular surgery: feasibility and first uses in the operating room in INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY
  • 2014-07-20. Augmented reality in the surgery of cerebral arteriovenous malformations: technique assessment and considerations in ACTA NEUROCHIRURGICA
  • 2018-06-05. Probe versus microscope: a comparison of different methods for image-to-patient registration in INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY
  • 2011-07-13. Visualization Techniques for Augmented Reality in HANDBOOK OF AUGMENTED REALITY
  • 2015-12-10. Interaction-Based Registration Correction for Improved Augmented Reality Overlay in Neurosurgery in AUGMENTED ENVIRONMENTS FOR COMPUTER-ASSISTED INTERVENTIONS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00701-021-05045-1

    DOI

    http://dx.doi.org/10.1007/s00701-021-05045-1

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1143844096

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/34904183


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Clinical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Augmented Reality", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Brain", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Imaging, Three-Dimensional", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Neuronavigation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Prospective Studies", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Surgery, Computer-Assisted", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Neurosurgery, Charit\u00e9-Universit\u00e4tsmedizin Berlin, Berlin, Germany", 
              "id": "http://www.grid.ac/institutes/grid.6363.0", 
              "name": [
                "Department of Neurosurgery, Charit\u00e9-Universit\u00e4tsmedizin Berlin, Berlin, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Roethe", 
            "givenName": "Anna L.", 
            "id": "sg:person.012515135600.69", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012515135600.69"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Neurosurgery, Charit\u00e9-Universit\u00e4tsmedizin Berlin, Berlin, Germany", 
              "id": "http://www.grid.ac/institutes/grid.6363.0", 
              "name": [
                "Department of Neurosurgery, Charit\u00e9-Universit\u00e4tsmedizin Berlin, Berlin, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "R\u00f6sler", 
            "givenName": "Judith", 
            "id": "sg:person.01067156462.17", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01067156462.17"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Neurosurgery, Charit\u00e9-Universit\u00e4tsmedizin Berlin, Berlin, Germany", 
              "id": "http://www.grid.ac/institutes/grid.6363.0", 
              "name": [
                "Department of Neurosurgery, Charit\u00e9-Universit\u00e4tsmedizin Berlin, Berlin, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Misch", 
            "givenName": "Martin", 
            "id": "sg:person.01202312324.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01202312324.10"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Neurosurgery, Charit\u00e9-Universit\u00e4tsmedizin Berlin, Berlin, Germany", 
              "id": "http://www.grid.ac/institutes/grid.6363.0", 
              "name": [
                "Department of Neurosurgery, Charit\u00e9-Universit\u00e4tsmedizin Berlin, Berlin, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Vajkoczy", 
            "givenName": "Peter", 
            "id": "sg:person.0773145636.21", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0773145636.21"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Berlin Simulation and Training Center (BeST), Charit\u00e9-Universit\u00e4tsmedizin Berlin, Berlin, Germany", 
              "id": "http://www.grid.ac/institutes/grid.6363.0", 
              "name": [
                "Department of Neurosurgery, Charit\u00e9-Universit\u00e4tsmedizin Berlin, Berlin, Germany", 
                "Cluster of Excellence Matters of Activity, Image Space Material, Humboldt-Universit\u00e4t Zu Berlin, Berlin, Germany", 
                "Berlin Simulation and Training Center (BeST), Charit\u00e9-Universit\u00e4tsmedizin Berlin, Berlin, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Picht", 
            "givenName": "Thomas", 
            "id": "sg:person.01264043163.47", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01264043163.47"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00701-014-2183-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017616234", 
              "https://doi.org/10.1007/s00701-014-2183-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-24601-7_3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084736187", 
              "https://doi.org/10.1007/978-3-319-24601-7_3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10143-016-0732-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023171873", 
              "https://doi.org/10.1007/s10143-016-0732-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11548-018-1800-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104396375", 
              "https://doi.org/10.1007/s11548-018-1800-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11548-015-1163-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018931173", 
              "https://doi.org/10.1007/s11548-015-1163-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4614-0064-6_3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032951098", 
              "https://doi.org/10.1007/978-1-4614-0064-6_3"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2021-12-13", 
        "datePublishedReg": "2021-12-13", 
        "description": "BackgroundAugmented reality (AR) has the potential to support complex neurosurgical interventions by including visual information seamlessly. This study examines intraoperative visualization parameters and clinical impact of AR in brain tumor surgery.MethodsFifty-five intracranial lesions, operated either with AR-navigated microscope (n\u2009=\u200939) or conventional neuronavigation (n\u2009=\u200916) after randomization, have been included prospectively. Surgical resection time, duration/type/mode of AR, displayed objects (n, type), pointer-based navigation checks (n), usability of control, quality indicators, and overall surgical usefulness of AR have been assessed.ResultsAR display has been used in 44.4% of resection time. Predominant AR type was navigation view (75.7%), followed by target volumes (20.1%). Predominant AR mode was picture-in-picture (PiP) (72.5%), followed by 23.3% overlay display. In 43.6% of cases, vision of important anatomical structures has been partially or entirely blocked by AR information. A total of 7.7% of cases used MRI navigation only, 30.8% used one, 23.1% used two, and 38.5% used three or more object segmentations in AR navigation. A total of 66.7% of surgeons found AR visualization helpful in the individual surgical case. AR depth information and accuracy have been rated acceptable (median 3.0 vs. median 5.0 in conventional neuronavigation). The mean utilization of the navigation pointer was 2.6\u2009\u00d7\u2009/resection hour (AR) vs. 9.7\u2009\u00d7\u2009/resection hour (neuronavigation); navigation effort was significantly reduced in AR (P\u2009<\u20090.001).ConclusionsThe main benefit of HUD-based AR visualization in brain tumor surgery is the integrated continuous display allowing for pointer-less navigation. Navigation view (PiP) provides the highest usability while blocking the operative field less frequently. Visualization quality will benefit from improvements in registration accuracy and depth impression.German clinical trials registration number.DRKS00016955.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00701-021-05045-1", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1412990", 
            "issn": [
              "0001-6268", 
              "0942-0940"
            ], 
            "name": "Acta Neurochirurgica", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "164"
          }
        ], 
        "keywords": [
          "brain tumor surgery", 
          "resection time", 
          "tumor surgery", 
          "surgical resection time", 
          "surgical usefulness", 
          "important anatomical structures", 
          "MRI navigation", 
          "neurosurgical intervention", 
          "conventional neuronavigation", 
          "clinical impact", 
          "brain lesions", 
          "type/mode", 
          "surgical cases", 
          "intracranial lesions", 
          "operative field", 
          "target volume", 
          "navigation pointer", 
          "surgery", 
          "individual surgical cases", 
          "mean utilization", 
          "lesions", 
          "total", 
          "AR navigation", 
          "anatomical structures", 
          "AR type", 
          "hours", 
          "surgeons", 
          "Augmented Reality Visualization", 
          "quality indicators", 
          "cases", 
          "neuronavigation", 
          "intervention", 
          "microneurosurgery", 
          "randomization", 
          "visual information", 
          "AR visualization", 
          "continuous display", 
          "AR mode", 
          "visualization quality", 
          "overlay display", 
          "control", 
          "evaluation", 
          "study", 
          "visualization", 
          "benefits", 
          "time", 
          "usefulness", 
          "volume", 
          "improvement", 
          "current limitations", 
          "reality visualization", 
          "information", 
          "picture", 
          "impression", 
          "indicators", 
          "AR information", 
          "navigation effort", 
          "quality", 
          "high usability", 
          "Ar", 
          "types", 
          "vision", 
          "impact", 
          "utilization", 
          "potential", 
          "usability of controls", 
          "limitations", 
          "efforts", 
          "view", 
          "HUD", 
          "registration accuracy", 
          "display", 
          "navigation view", 
          "check", 
          "main benefits", 
          "usability", 
          "accuracy", 
          "navigation", 
          "parameters", 
          "pointers", 
          "mode", 
          "microscope", 
          "visualization parameters", 
          "depth information", 
          "depth impression", 
          "reality", 
          "field", 
          "structure", 
          "segmentation", 
          "objects", 
          "object segmentation"
        ], 
        "name": "Augmented reality visualization in brain lesions: a prospective randomized controlled evaluation of its potential and current limitations in navigated microneurosurgery", 
        "pagination": "3-14", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1143844096"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00701-021-05045-1"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "34904183"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00701-021-05045-1", 
          "https://app.dimensions.ai/details/publication/pub.1143844096"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-20T07:38", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_876.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00701-021-05045-1"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00701-021-05045-1'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00701-021-05045-1'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00701-021-05045-1'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00701-021-05045-1'


     

    This table displays all metadata directly associated to this object as RDF triples.

    236 TRIPLES      22 PREDICATES      130 URIs      116 LITERALS      14 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00701-021-05045-1 schema:about N9c0794ab28204c31952d2d191d9e3cf8
    2 Na12049f526a8434194f1f81a02157f40
    3 Na204272739a645e98f6b3ce2fd8e31fd
    4 Ne5c13c8872c549c9a5cb123e0daf876d
    5 Nec8df95b1dcc464ea3e325db0422a9f5
    6 Nee28e33a4afd4e739fb05b90987adc50
    7 Nf2fa7c5a69ac42209a3dc19ee7e41f87
    8 anzsrc-for:11
    9 anzsrc-for:1103
    10 schema:author N49e4f459eb084a9e82c6a0b5d8878abc
    11 schema:citation sg:pub.10.1007/978-1-4614-0064-6_3
    12 sg:pub.10.1007/978-3-319-24601-7_3
    13 sg:pub.10.1007/s00701-014-2183-9
    14 sg:pub.10.1007/s10143-016-0732-9
    15 sg:pub.10.1007/s11548-015-1163-8
    16 sg:pub.10.1007/s11548-018-1800-0
    17 schema:datePublished 2021-12-13
    18 schema:datePublishedReg 2021-12-13
    19 schema:description BackgroundAugmented reality (AR) has the potential to support complex neurosurgical interventions by including visual information seamlessly. This study examines intraoperative visualization parameters and clinical impact of AR in brain tumor surgery.MethodsFifty-five intracranial lesions, operated either with AR-navigated microscope (n = 39) or conventional neuronavigation (n = 16) after randomization, have been included prospectively. Surgical resection time, duration/type/mode of AR, displayed objects (n, type), pointer-based navigation checks (n), usability of control, quality indicators, and overall surgical usefulness of AR have been assessed.ResultsAR display has been used in 44.4% of resection time. Predominant AR type was navigation view (75.7%), followed by target volumes (20.1%). Predominant AR mode was picture-in-picture (PiP) (72.5%), followed by 23.3% overlay display. In 43.6% of cases, vision of important anatomical structures has been partially or entirely blocked by AR information. A total of 7.7% of cases used MRI navigation only, 30.8% used one, 23.1% used two, and 38.5% used three or more object segmentations in AR navigation. A total of 66.7% of surgeons found AR visualization helpful in the individual surgical case. AR depth information and accuracy have been rated acceptable (median 3.0 vs. median 5.0 in conventional neuronavigation). The mean utilization of the navigation pointer was 2.6 × /resection hour (AR) vs. 9.7 × /resection hour (neuronavigation); navigation effort was significantly reduced in AR (P < 0.001).ConclusionsThe main benefit of HUD-based AR visualization in brain tumor surgery is the integrated continuous display allowing for pointer-less navigation. Navigation view (PiP) provides the highest usability while blocking the operative field less frequently. Visualization quality will benefit from improvements in registration accuracy and depth impression.German clinical trials registration number.DRKS00016955.
    20 schema:genre article
    21 schema:inLanguage en
    22 schema:isAccessibleForFree true
    23 schema:isPartOf N11865673797445c69c438e7a5ae2f0d2
    24 Na45206290464412a8d1ed41dbf6342e9
    25 sg:journal.1412990
    26 schema:keywords AR information
    27 AR mode
    28 AR navigation
    29 AR type
    30 AR visualization
    31 Ar
    32 Augmented Reality Visualization
    33 HUD
    34 MRI navigation
    35 accuracy
    36 anatomical structures
    37 benefits
    38 brain lesions
    39 brain tumor surgery
    40 cases
    41 check
    42 clinical impact
    43 continuous display
    44 control
    45 conventional neuronavigation
    46 current limitations
    47 depth impression
    48 depth information
    49 display
    50 efforts
    51 evaluation
    52 field
    53 high usability
    54 hours
    55 impact
    56 important anatomical structures
    57 impression
    58 improvement
    59 indicators
    60 individual surgical cases
    61 information
    62 intervention
    63 intracranial lesions
    64 lesions
    65 limitations
    66 main benefits
    67 mean utilization
    68 microneurosurgery
    69 microscope
    70 mode
    71 navigation
    72 navigation effort
    73 navigation pointer
    74 navigation view
    75 neuronavigation
    76 neurosurgical intervention
    77 object segmentation
    78 objects
    79 operative field
    80 overlay display
    81 parameters
    82 picture
    83 pointers
    84 potential
    85 quality
    86 quality indicators
    87 randomization
    88 reality
    89 reality visualization
    90 registration accuracy
    91 resection time
    92 segmentation
    93 structure
    94 study
    95 surgeons
    96 surgery
    97 surgical cases
    98 surgical resection time
    99 surgical usefulness
    100 target volume
    101 time
    102 total
    103 tumor surgery
    104 type/mode
    105 types
    106 usability
    107 usability of controls
    108 usefulness
    109 utilization
    110 view
    111 vision
    112 visual information
    113 visualization
    114 visualization parameters
    115 visualization quality
    116 volume
    117 schema:name Augmented reality visualization in brain lesions: a prospective randomized controlled evaluation of its potential and current limitations in navigated microneurosurgery
    118 schema:pagination 3-14
    119 schema:productId N0ad21f8094544020ab53db980d010faa
    120 N23dc9b8244314f28bc5e87c2595b3ac3
    121 N80092fec493f4fc392d36f31fad90aea
    122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1143844096
    123 https://doi.org/10.1007/s00701-021-05045-1
    124 schema:sdDatePublished 2022-05-20T07:38
    125 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    126 schema:sdPublisher Nc629f8a14e9b40e59c94cbf1dda82470
    127 schema:url https://doi.org/10.1007/s00701-021-05045-1
    128 sgo:license sg:explorer/license/
    129 sgo:sdDataset articles
    130 rdf:type schema:ScholarlyArticle
    131 N0ad21f8094544020ab53db980d010faa schema:name dimensions_id
    132 schema:value pub.1143844096
    133 rdf:type schema:PropertyValue
    134 N11865673797445c69c438e7a5ae2f0d2 schema:issueNumber 1
    135 rdf:type schema:PublicationIssue
    136 N23dc9b8244314f28bc5e87c2595b3ac3 schema:name doi
    137 schema:value 10.1007/s00701-021-05045-1
    138 rdf:type schema:PropertyValue
    139 N49e4f459eb084a9e82c6a0b5d8878abc rdf:first sg:person.012515135600.69
    140 rdf:rest Ne37b7ec7d04e4c5681fd1aba6a00e1fc
    141 N80092fec493f4fc392d36f31fad90aea schema:name pubmed_id
    142 schema:value 34904183
    143 rdf:type schema:PropertyValue
    144 N8b1c55083fb846758048aefec227f500 rdf:first sg:person.01264043163.47
    145 rdf:rest rdf:nil
    146 N8f1f240d4d5049069efaf1681356c871 rdf:first sg:person.01202312324.10
    147 rdf:rest N9d5ad3e5ef9e4fcebb61b50fd87b4afd
    148 N9c0794ab28204c31952d2d191d9e3cf8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    149 schema:name Prospective Studies
    150 rdf:type schema:DefinedTerm
    151 N9d5ad3e5ef9e4fcebb61b50fd87b4afd rdf:first sg:person.0773145636.21
    152 rdf:rest N8b1c55083fb846758048aefec227f500
    153 Na12049f526a8434194f1f81a02157f40 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    154 schema:name Brain
    155 rdf:type schema:DefinedTerm
    156 Na204272739a645e98f6b3ce2fd8e31fd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    157 schema:name Augmented Reality
    158 rdf:type schema:DefinedTerm
    159 Na45206290464412a8d1ed41dbf6342e9 schema:volumeNumber 164
    160 rdf:type schema:PublicationVolume
    161 Nc629f8a14e9b40e59c94cbf1dda82470 schema:name Springer Nature - SN SciGraph project
    162 rdf:type schema:Organization
    163 Ne37b7ec7d04e4c5681fd1aba6a00e1fc rdf:first sg:person.01067156462.17
    164 rdf:rest N8f1f240d4d5049069efaf1681356c871
    165 Ne5c13c8872c549c9a5cb123e0daf876d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    166 schema:name Humans
    167 rdf:type schema:DefinedTerm
    168 Nec8df95b1dcc464ea3e325db0422a9f5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    169 schema:name Surgery, Computer-Assisted
    170 rdf:type schema:DefinedTerm
    171 Nee28e33a4afd4e739fb05b90987adc50 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    172 schema:name Neuronavigation
    173 rdf:type schema:DefinedTerm
    174 Nf2fa7c5a69ac42209a3dc19ee7e41f87 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    175 schema:name Imaging, Three-Dimensional
    176 rdf:type schema:DefinedTerm
    177 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    178 schema:name Medical and Health Sciences
    179 rdf:type schema:DefinedTerm
    180 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
    181 schema:name Clinical Sciences
    182 rdf:type schema:DefinedTerm
    183 sg:journal.1412990 schema:issn 0001-6268
    184 0942-0940
    185 schema:name Acta Neurochirurgica
    186 schema:publisher Springer Nature
    187 rdf:type schema:Periodical
    188 sg:person.01067156462.17 schema:affiliation grid-institutes:grid.6363.0
    189 schema:familyName Rösler
    190 schema:givenName Judith
    191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01067156462.17
    192 rdf:type schema:Person
    193 sg:person.01202312324.10 schema:affiliation grid-institutes:grid.6363.0
    194 schema:familyName Misch
    195 schema:givenName Martin
    196 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01202312324.10
    197 rdf:type schema:Person
    198 sg:person.012515135600.69 schema:affiliation grid-institutes:grid.6363.0
    199 schema:familyName Roethe
    200 schema:givenName Anna L.
    201 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012515135600.69
    202 rdf:type schema:Person
    203 sg:person.01264043163.47 schema:affiliation grid-institutes:grid.6363.0
    204 schema:familyName Picht
    205 schema:givenName Thomas
    206 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01264043163.47
    207 rdf:type schema:Person
    208 sg:person.0773145636.21 schema:affiliation grid-institutes:grid.6363.0
    209 schema:familyName Vajkoczy
    210 schema:givenName Peter
    211 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0773145636.21
    212 rdf:type schema:Person
    213 sg:pub.10.1007/978-1-4614-0064-6_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032951098
    214 https://doi.org/10.1007/978-1-4614-0064-6_3
    215 rdf:type schema:CreativeWork
    216 sg:pub.10.1007/978-3-319-24601-7_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084736187
    217 https://doi.org/10.1007/978-3-319-24601-7_3
    218 rdf:type schema:CreativeWork
    219 sg:pub.10.1007/s00701-014-2183-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017616234
    220 https://doi.org/10.1007/s00701-014-2183-9
    221 rdf:type schema:CreativeWork
    222 sg:pub.10.1007/s10143-016-0732-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023171873
    223 https://doi.org/10.1007/s10143-016-0732-9
    224 rdf:type schema:CreativeWork
    225 sg:pub.10.1007/s11548-015-1163-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018931173
    226 https://doi.org/10.1007/s11548-015-1163-8
    227 rdf:type schema:CreativeWork
    228 sg:pub.10.1007/s11548-018-1800-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104396375
    229 https://doi.org/10.1007/s11548-018-1800-0
    230 rdf:type schema:CreativeWork
    231 grid-institutes:grid.6363.0 schema:alternateName Berlin Simulation and Training Center (BeST), Charité-Universitätsmedizin Berlin, Berlin, Germany
    232 Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
    233 schema:name Berlin Simulation and Training Center (BeST), Charité-Universitätsmedizin Berlin, Berlin, Germany
    234 Cluster of Excellence Matters of Activity, Image Space Material, Humboldt-Universität Zu Berlin, Berlin, Germany
    235 Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
    236 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...