In vitro performance of the fixed and adjustable gravity-assisted unit with and without motion—evidence of motion-induced flow View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-08-24

AUTHORS

Takaoki Kimura, Matthias Schulz, Kazuaki Shimoji, Masakazu Miyajima, Hajime Arai, Ulrich-Wilhelm Thomale

ABSTRACT

BackgroundAnti-siphon devices and gravitational-assisted valves have been introduced to counteract the effects of overdrainage after implantation of a shunt system. The study examined the flow performance of two gravitational-assisted valves (shunt assistant – SA and programmable shunt assistant – proSA, Miethke & Co. KG, Potsdam, Germany) in an in vitro shunt laboratory with and without motion.MethodsAn in vitro laboratory setup was used to model the cerebrospinal fluid (CSF) drainage conditions similar to a ventriculo-peritoneal shunt and to test the SA (resistance of +20 cmH2O in 90°) and proSA (adjustable resistance of 0 to +40 cmH2O in 90°). The differential pressure (DP) through the simulated shunt and tested valve was adjusted between 0 and 60 cmH2O by combinations of different inflow pressures (40, 30, 20, 10, and 0 cmH2O) and the hydrostatic negative outflow pressure (0, -20, and -40 cmH2O) in several differing device positions (0°, 30°, 60°, and 90°). In addition, the two devices were tested under vertical motion with movement frequencies of 2, 3, and 4 Hz.ResultsBoth gravity-assisted units effectively counteract the hydrostatic effect in relation to the chosen differential pressure. The setting the proSA resulted in flow reductions in the 90° position according to the chosen resistance of the device. Angulation-related flow changes were similar in the two devices in 30–90° position, however, in the 0–30° position, a higher flow is seen in the proSA. Repeated vertical movement significantly increased flow through both devices. While with the proSA a 2-Hz motion was not able to induce additional flow (0.006 ± 0.05 ml/min), 3- and 4-Hz motion significantly induced higher flow values (3 Hz: +0.56 ± 0.12 ml/min, 4 Hz: +0.54 ± 0.04 ml/min). The flow through the SA was not induced by vertical movements at a low DP of 10 cmH2O at all frequencies, but at DPs of 30 cmH2O and higher, all frequencies significantly induced higher flow values (2 Hz: +0.36 ± 0.14 ml/min, 3 Hz: +0.32 ± 0.08 ml/min, 4 Hz: +0.28 ± 0.09 ml/min).ConclusionsIn a static setup, both tested valves effectively counteracted the hydrostatic effect according to their adjusted or predefined resistance in vertical position. Motion-induced increased flow was demonstrated for both devices with different patterns of flow depending on applied DP and setting of the respective valve. The documented increased drainage should be considered when selecting appropriate valves and settings in very active patients. More... »

PAGES

2011-2018

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00701-016-2912-3

DOI

http://dx.doi.org/10.1007/s00701-016-2912-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1003941512

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/27553048


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cerebrospinal Fluid Shunts", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Drainage", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Equipment Design", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gravitation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hydrodynamics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Motion", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Neurosurgery, Juntendo University, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.258269.2", 
          "name": [
            "Department of Neurosurgery, Juntendo University, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kimura", 
        "givenName": "Takaoki", 
        "id": "sg:person.01257120276.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01257120276.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Pediatric Neurosurgery, Charit\u00e9 Campus Virchow Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany", 
          "id": "http://www.grid.ac/institutes/grid.6363.0", 
          "name": [
            "Pediatric Neurosurgery, Charit\u00e9 Campus Virchow Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schulz", 
        "givenName": "Matthias", 
        "id": "sg:person.01232326703.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01232326703.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Neurosurgery, Juntendo University, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.258269.2", 
          "name": [
            "Department of Neurosurgery, Juntendo University, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shimoji", 
        "givenName": "Kazuaki", 
        "id": "sg:person.0776133075.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0776133075.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Neurosurgery, Juntendo University, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.258269.2", 
          "name": [
            "Department of Neurosurgery, Juntendo University, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Miyajima", 
        "givenName": "Masakazu", 
        "id": "sg:person.01202611574.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01202611574.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Neurosurgery, Juntendo University, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.258269.2", 
          "name": [
            "Department of Neurosurgery, Juntendo University, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Arai", 
        "givenName": "Hajime", 
        "id": "sg:person.01325532346.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01325532346.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Pediatric Neurosurgery, Charit\u00e9 Campus Virchow Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany", 
          "id": "http://www.grid.ac/institutes/grid.6363.0", 
          "name": [
            "Pediatric Neurosurgery, Charit\u00e9 Campus Virchow Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Thomale", 
        "givenName": "Ulrich-Wilhelm", 
        "id": "sg:person.0623616137.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623616137.20"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00381-013-2324-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037287953", 
          "https://doi.org/10.1007/s00381-013-2324-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00270761", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038792013", 
          "https://doi.org/10.1007/bf00270761"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01402318", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040317046", 
          "https://doi.org/10.1007/bf01402318"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01774384", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008906355", 
          "https://doi.org/10.1007/bf01774384"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00701-014-2201-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034075105", 
          "https://doi.org/10.1007/s00701-014-2201-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00717890", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043740561", 
          "https://doi.org/10.1007/bf00717890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00701-013-1934-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030664339", 
          "https://doi.org/10.1007/s00701-013-1934-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-7091-0923-6_15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052147422", 
          "https://doi.org/10.1007/978-3-7091-0923-6_15"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00701-002-0977-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034500569", 
          "https://doi.org/10.1007/s00701-002-0977-7"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-08-24", 
    "datePublishedReg": "2016-08-24", 
    "description": "BackgroundAnti-siphon devices and gravitational-assisted valves have been introduced to counteract the effects of overdrainage after implantation of a shunt system. The study examined the flow performance of two gravitational-assisted valves (shunt assistant \u2013 SA and programmable shunt assistant \u2013 proSA, Miethke & Co. KG, Potsdam, Germany) in an in vitro shunt laboratory with and without motion.MethodsAn in vitro laboratory setup was used to model the cerebrospinal fluid (CSF) drainage conditions similar to a ventriculo-peritoneal shunt and to test the SA (resistance of +20\u00a0cmH2O in 90\u00b0) and proSA (adjustable resistance of 0 to +40\u00a0cmH2O in 90\u00b0). The differential pressure (DP) through the simulated shunt and tested valve was adjusted between 0 and 60\u00a0cmH2O by combinations of different inflow pressures (40, 30, 20, 10, and 0\u00a0cmH2O) and the hydrostatic negative outflow pressure (0, -20, and -40\u00a0cmH2O) in several differing device positions (0\u00b0, 30\u00b0, 60\u00b0, and 90\u00b0). In addition, the two devices were tested under vertical motion with movement frequencies of 2, 3, and 4\u00a0Hz.ResultsBoth gravity-assisted units effectively counteract the hydrostatic effect in relation to the chosen differential pressure. The setting the proSA resulted in flow reductions in the 90\u00b0 position according to the chosen resistance of the device. Angulation-related flow changes were similar in the two devices in 30\u201390\u00b0 position, however, in the 0\u201330\u00b0 position, a higher flow is seen in the proSA. Repeated vertical movement significantly increased flow through both devices. While with the proSA a 2-Hz motion was not able to induce additional flow (0.006\u2009\u00b1\u20090.05\u00a0ml/min), 3- and 4-Hz motion significantly induced higher flow values (3\u00a0Hz: +0.56\u2009\u00b1\u20090.12\u00a0ml/min, 4\u00a0Hz: +0.54\u2009\u00b1\u20090.04\u00a0ml/min). The flow through the SA was not induced by vertical movements at a low DP of 10\u00a0cmH2O at all frequencies, but at DPs of 30 cmH2O and higher, all frequencies significantly induced higher flow values (2\u00a0Hz: +0.36\u2009\u00b1\u20090.14\u00a0ml/min, 3\u00a0Hz: +0.32\u2009\u00b1\u20090.08\u00a0ml/min, 4\u00a0Hz: +0.28\u2009\u00b1\u20090.09\u00a0ml/min).ConclusionsIn a static setup, both tested valves effectively counteracted the hydrostatic effect according to their adjusted or predefined resistance in vertical position. Motion-induced increased flow was demonstrated for both devices with different patterns of flow depending on applied DP and setting of the respective valve. The documented increased drainage should be considered when selecting appropriate valves and settings in very active patients.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00701-016-2912-3", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1412990", 
        "issn": [
          "0001-6268", 
          "0942-0940"
        ], 
        "name": "Acta Neurochirurgica", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "158"
      }
    ], 
    "keywords": [
      "differential pressure", 
      "low differential pressure", 
      "flow performance", 
      "laboratory setup", 
      "hydrostatic effects", 
      "vertical motion", 
      "drainage conditions", 
      "respective valves", 
      "vertical movement", 
      "additional flow", 
      "devices", 
      "flow", 
      "flow values", 
      "vertical position", 
      "appropriate valve", 
      "motion", 
      "higher flow values", 
      "static setup", 
      "high flow", 
      "device position", 
      "setup", 
      "valve", 
      "performance", 
      "pressure", 
      "resistance", 
      "frequency", 
      "flow reduction", 
      "Hz", 
      "inflow pressure", 
      "flow changes", 
      "effect", 
      "position", 
      "values", 
      "units", 
      "conditions", 
      "SA", 
      "system", 
      "reduction", 
      "outflow pressure", 
      "implantation", 
      "combination", 
      "movement", 
      "laboratory", 
      "addition", 
      "drainage", 
      "shunt system", 
      "changes", 
      "study", 
      "relation", 
      "patterns", 
      "PROSA", 
      "movement frequency", 
      "MethodsAn", 
      "ConclusionsIn", 
      "active patients", 
      "shunt", 
      "different patterns", 
      "overdrainage", 
      "setting", 
      "ventriculo-peritoneal shunt", 
      "patients"
    ], 
    "name": "In vitro performance of the fixed and adjustable gravity-assisted unit with and without motion\u2014evidence of motion-induced flow", 
    "pagination": "2011-2018", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1003941512"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00701-016-2912-3"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "27553048"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00701-016-2912-3", 
      "https://app.dimensions.ai/details/publication/pub.1003941512"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_698.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00701-016-2912-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00701-016-2912-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00701-016-2912-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00701-016-2912-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00701-016-2912-3'


 

This table displays all metadata directly associated to this object as RDF triples.

225 TRIPLES      22 PREDICATES      103 URIs      85 LITERALS      13 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00701-016-2912-3 schema:about N53f65f6ff31843ff883b369dece1b912
2 N708a38b57d48477d973276e352f08841
3 N9a41d6cfd9cf4635af79e319c5e643d5
4 Nd88327a5906340acad431b10c9b39575
5 Ne16fead3a8b24467963583b022b7de75
6 Ne413d2856c894790baae7915c44476f0
7 anzsrc-for:11
8 anzsrc-for:1103
9 anzsrc-for:1109
10 schema:author N42d3e19521ed4155b8cafdb757113b2d
11 schema:citation sg:pub.10.1007/978-3-7091-0923-6_15
12 sg:pub.10.1007/bf00270761
13 sg:pub.10.1007/bf00717890
14 sg:pub.10.1007/bf01402318
15 sg:pub.10.1007/bf01774384
16 sg:pub.10.1007/s00381-013-2324-0
17 sg:pub.10.1007/s00701-002-0977-7
18 sg:pub.10.1007/s00701-013-1934-3
19 sg:pub.10.1007/s00701-014-2201-y
20 schema:datePublished 2016-08-24
21 schema:datePublishedReg 2016-08-24
22 schema:description BackgroundAnti-siphon devices and gravitational-assisted valves have been introduced to counteract the effects of overdrainage after implantation of a shunt system. The study examined the flow performance of two gravitational-assisted valves (shunt assistant – SA and programmable shunt assistant – proSA, Miethke & Co. KG, Potsdam, Germany) in an in vitro shunt laboratory with and without motion.MethodsAn in vitro laboratory setup was used to model the cerebrospinal fluid (CSF) drainage conditions similar to a ventriculo-peritoneal shunt and to test the SA (resistance of +20 cmH2O in 90°) and proSA (adjustable resistance of 0 to +40 cmH2O in 90°). The differential pressure (DP) through the simulated shunt and tested valve was adjusted between 0 and 60 cmH2O by combinations of different inflow pressures (40, 30, 20, 10, and 0 cmH2O) and the hydrostatic negative outflow pressure (0, -20, and -40 cmH2O) in several differing device positions (0°, 30°, 60°, and 90°). In addition, the two devices were tested under vertical motion with movement frequencies of 2, 3, and 4 Hz.ResultsBoth gravity-assisted units effectively counteract the hydrostatic effect in relation to the chosen differential pressure. The setting the proSA resulted in flow reductions in the 90° position according to the chosen resistance of the device. Angulation-related flow changes were similar in the two devices in 30–90° position, however, in the 0–30° position, a higher flow is seen in the proSA. Repeated vertical movement significantly increased flow through both devices. While with the proSA a 2-Hz motion was not able to induce additional flow (0.006 ± 0.05 ml/min), 3- and 4-Hz motion significantly induced higher flow values (3 Hz: +0.56 ± 0.12 ml/min, 4 Hz: +0.54 ± 0.04 ml/min). The flow through the SA was not induced by vertical movements at a low DP of 10 cmH2O at all frequencies, but at DPs of 30 cmH2O and higher, all frequencies significantly induced higher flow values (2 Hz: +0.36 ± 0.14 ml/min, 3 Hz: +0.32 ± 0.08 ml/min, 4 Hz: +0.28 ± 0.09 ml/min).ConclusionsIn a static setup, both tested valves effectively counteracted the hydrostatic effect according to their adjusted or predefined resistance in vertical position. Motion-induced increased flow was demonstrated for both devices with different patterns of flow depending on applied DP and setting of the respective valve. The documented increased drainage should be considered when selecting appropriate valves and settings in very active patients.
23 schema:genre article
24 schema:inLanguage en
25 schema:isAccessibleForFree false
26 schema:isPartOf N1b840973c76541d2b3fd84d25ba2d247
27 Nbc67e9b33e06479da2b29816c4da4a48
28 sg:journal.1412990
29 schema:keywords ConclusionsIn
30 Hz
31 MethodsAn
32 PROSA
33 SA
34 active patients
35 addition
36 additional flow
37 appropriate valve
38 changes
39 combination
40 conditions
41 device position
42 devices
43 different patterns
44 differential pressure
45 drainage
46 drainage conditions
47 effect
48 flow
49 flow changes
50 flow performance
51 flow reduction
52 flow values
53 frequency
54 high flow
55 higher flow values
56 hydrostatic effects
57 implantation
58 inflow pressure
59 laboratory
60 laboratory setup
61 low differential pressure
62 motion
63 movement
64 movement frequency
65 outflow pressure
66 overdrainage
67 patients
68 patterns
69 performance
70 position
71 pressure
72 reduction
73 relation
74 resistance
75 respective valves
76 setting
77 setup
78 shunt
79 shunt system
80 static setup
81 study
82 system
83 units
84 values
85 valve
86 ventriculo-peritoneal shunt
87 vertical motion
88 vertical movement
89 vertical position
90 schema:name In vitro performance of the fixed and adjustable gravity-assisted unit with and without motion—evidence of motion-induced flow
91 schema:pagination 2011-2018
92 schema:productId N630e6dc3e1b249e5a8fbc2b32adde17a
93 Nd44218b3587747159f285467bebe72f0
94 Nf8021a0b389b4224a8441ae2520e6197
95 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003941512
96 https://doi.org/10.1007/s00701-016-2912-3
97 schema:sdDatePublished 2022-05-20T07:32
98 schema:sdLicense https://scigraph.springernature.com/explorer/license/
99 schema:sdPublisher Nd8bf3711b83a496b933313bffd7c9cef
100 schema:url https://doi.org/10.1007/s00701-016-2912-3
101 sgo:license sg:explorer/license/
102 sgo:sdDataset articles
103 rdf:type schema:ScholarlyArticle
104 N1b840973c76541d2b3fd84d25ba2d247 schema:volumeNumber 158
105 rdf:type schema:PublicationVolume
106 N2c4d53a945fe4542b9153bab338b5913 rdf:first sg:person.01232326703.44
107 rdf:rest N8285b0ab724440f2a554ba4bf6bacdf4
108 N42d3e19521ed4155b8cafdb757113b2d rdf:first sg:person.01257120276.11
109 rdf:rest N2c4d53a945fe4542b9153bab338b5913
110 N433c9e5ba41142ecab9bd54bf4c0d3ec rdf:first sg:person.01202611574.46
111 rdf:rest Nd58ed51080ad4ab3928136b526dd423a
112 N53f65f6ff31843ff883b369dece1b912 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Gravitation
114 rdf:type schema:DefinedTerm
115 N630e6dc3e1b249e5a8fbc2b32adde17a schema:name dimensions_id
116 schema:value pub.1003941512
117 rdf:type schema:PropertyValue
118 N708a38b57d48477d973276e352f08841 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Cerebrospinal Fluid Shunts
120 rdf:type schema:DefinedTerm
121 N8285b0ab724440f2a554ba4bf6bacdf4 rdf:first sg:person.0776133075.94
122 rdf:rest N433c9e5ba41142ecab9bd54bf4c0d3ec
123 N9a41d6cfd9cf4635af79e319c5e643d5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Motion
125 rdf:type schema:DefinedTerm
126 Nbc67e9b33e06479da2b29816c4da4a48 schema:issueNumber 10
127 rdf:type schema:PublicationIssue
128 Nbcac9d9afb0c4fa4924206f2052bea20 rdf:first sg:person.0623616137.20
129 rdf:rest rdf:nil
130 Nd44218b3587747159f285467bebe72f0 schema:name doi
131 schema:value 10.1007/s00701-016-2912-3
132 rdf:type schema:PropertyValue
133 Nd58ed51080ad4ab3928136b526dd423a rdf:first sg:person.01325532346.63
134 rdf:rest Nbcac9d9afb0c4fa4924206f2052bea20
135 Nd88327a5906340acad431b10c9b39575 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Equipment Design
137 rdf:type schema:DefinedTerm
138 Nd8bf3711b83a496b933313bffd7c9cef schema:name Springer Nature - SN SciGraph project
139 rdf:type schema:Organization
140 Ne16fead3a8b24467963583b022b7de75 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Drainage
142 rdf:type schema:DefinedTerm
143 Ne413d2856c894790baae7915c44476f0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
144 schema:name Hydrodynamics
145 rdf:type schema:DefinedTerm
146 Nf8021a0b389b4224a8441ae2520e6197 schema:name pubmed_id
147 schema:value 27553048
148 rdf:type schema:PropertyValue
149 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
150 schema:name Medical and Health Sciences
151 rdf:type schema:DefinedTerm
152 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
153 schema:name Clinical Sciences
154 rdf:type schema:DefinedTerm
155 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
156 schema:name Neurosciences
157 rdf:type schema:DefinedTerm
158 sg:journal.1412990 schema:issn 0001-6268
159 0942-0940
160 schema:name Acta Neurochirurgica
161 schema:publisher Springer Nature
162 rdf:type schema:Periodical
163 sg:person.01202611574.46 schema:affiliation grid-institutes:grid.258269.2
164 schema:familyName Miyajima
165 schema:givenName Masakazu
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01202611574.46
167 rdf:type schema:Person
168 sg:person.01232326703.44 schema:affiliation grid-institutes:grid.6363.0
169 schema:familyName Schulz
170 schema:givenName Matthias
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01232326703.44
172 rdf:type schema:Person
173 sg:person.01257120276.11 schema:affiliation grid-institutes:grid.258269.2
174 schema:familyName Kimura
175 schema:givenName Takaoki
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01257120276.11
177 rdf:type schema:Person
178 sg:person.01325532346.63 schema:affiliation grid-institutes:grid.258269.2
179 schema:familyName Arai
180 schema:givenName Hajime
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01325532346.63
182 rdf:type schema:Person
183 sg:person.0623616137.20 schema:affiliation grid-institutes:grid.6363.0
184 schema:familyName Thomale
185 schema:givenName Ulrich-Wilhelm
186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623616137.20
187 rdf:type schema:Person
188 sg:person.0776133075.94 schema:affiliation grid-institutes:grid.258269.2
189 schema:familyName Shimoji
190 schema:givenName Kazuaki
191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0776133075.94
192 rdf:type schema:Person
193 sg:pub.10.1007/978-3-7091-0923-6_15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052147422
194 https://doi.org/10.1007/978-3-7091-0923-6_15
195 rdf:type schema:CreativeWork
196 sg:pub.10.1007/bf00270761 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038792013
197 https://doi.org/10.1007/bf00270761
198 rdf:type schema:CreativeWork
199 sg:pub.10.1007/bf00717890 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043740561
200 https://doi.org/10.1007/bf00717890
201 rdf:type schema:CreativeWork
202 sg:pub.10.1007/bf01402318 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040317046
203 https://doi.org/10.1007/bf01402318
204 rdf:type schema:CreativeWork
205 sg:pub.10.1007/bf01774384 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008906355
206 https://doi.org/10.1007/bf01774384
207 rdf:type schema:CreativeWork
208 sg:pub.10.1007/s00381-013-2324-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037287953
209 https://doi.org/10.1007/s00381-013-2324-0
210 rdf:type schema:CreativeWork
211 sg:pub.10.1007/s00701-002-0977-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034500569
212 https://doi.org/10.1007/s00701-002-0977-7
213 rdf:type schema:CreativeWork
214 sg:pub.10.1007/s00701-013-1934-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030664339
215 https://doi.org/10.1007/s00701-013-1934-3
216 rdf:type schema:CreativeWork
217 sg:pub.10.1007/s00701-014-2201-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1034075105
218 https://doi.org/10.1007/s00701-014-2201-y
219 rdf:type schema:CreativeWork
220 grid-institutes:grid.258269.2 schema:alternateName Department of Neurosurgery, Juntendo University, Tokyo, Japan
221 schema:name Department of Neurosurgery, Juntendo University, Tokyo, Japan
222 rdf:type schema:Organization
223 grid-institutes:grid.6363.0 schema:alternateName Pediatric Neurosurgery, Charité Campus Virchow Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
224 schema:name Pediatric Neurosurgery, Charité Campus Virchow Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
225 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...