A Note on Transformed Density Rejection View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2000-11

AUTHORS

J. Leydold

ABSTRACT

In this paper we describe a version of transformed density rejection that requires less uniform random numbers. Random variates below the squeeze are generated by inversion. For the expensive part between squeeze and density an algorithm that uses a covering with triangles is introduced.

PAGES

187-192

References to SciGraph publications

Journal

TITLE

Computing

ISSUE

2

VOLUME

65

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s006070070019

DOI

http://dx.doi.org/10.1007/s006070070019

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1045252453


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "affiliation": {
          "alternateName": "Vienna University of Economics and Business", 
          "id": "https://www.grid.ac/institutes/grid.15788.33", 
          "name": [
            "Institut f\u00fcr Statistik Wirtschaftsuniversit\u00e4t Wien A-1090 Wien, Augasse 2-6, Austria e-mail: Josef.Leydold@wu-wien.ac.at, AT"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Leydold", 
        "givenName": "J.", 
        "id": "sg:person.016226764632.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016226764632.14"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1145/203082.203089", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014296587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0025-5718-98-01004-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023342429"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4613-8643-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035447677", 
          "https://doi.org/10.1007/978-1-4613-8643-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4613-8643-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035447677", 
          "https://doi.org/10.1007/978-1-4613-8643-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02238128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040367890", 
          "https://doi.org/10.1007/bf02238128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02238128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040367890", 
          "https://doi.org/10.1007/bf02238128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/05695557408974949", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040669023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0905026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062855670"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2000-11", 
    "datePublishedReg": "2000-11-01", 
    "description": "In this paper we describe a version of transformed density rejection that requires less uniform random numbers. Random variates below the squeeze are generated by inversion. For the expensive part between squeeze and density an algorithm that uses a covering with triangles is introduced.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s006070070019", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1356894", 
        "issn": [
          "1521-9615", 
          "1436-5057"
        ], 
        "name": "Computing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "65"
      }
    ], 
    "name": "A Note on Transformed Density Rejection", 
    "pagination": "187-192", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d78dd501e397d44f703da8d787eb35541b587a6b1ac1c514b330b3a42b606144"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s006070070019"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1045252453"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s006070070019", 
      "https://app.dimensions.ai/details/publication/pub.1045252453"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T17:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000515.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs006070070019"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s006070070019'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s006070070019'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s006070070019'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s006070070019'


 

This table displays all metadata directly associated to this object as RDF triples.

73 TRIPLES      20 PREDICATES      31 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s006070070019 schema:author N2856c8d629e743c4bba26f8691edbab4
2 schema:citation sg:pub.10.1007/978-1-4613-8643-8
3 sg:pub.10.1007/bf02238128
4 https://doi.org/10.1080/05695557408974949
5 https://doi.org/10.1090/s0025-5718-98-01004-7
6 https://doi.org/10.1137/0905026
7 https://doi.org/10.1145/203082.203089
8 schema:datePublished 2000-11
9 schema:datePublishedReg 2000-11-01
10 schema:description In this paper we describe a version of transformed density rejection that requires less uniform random numbers. Random variates below the squeeze are generated by inversion. For the expensive part between squeeze and density an algorithm that uses a covering with triangles is introduced.
11 schema:genre research_article
12 schema:inLanguage en
13 schema:isAccessibleForFree true
14 schema:isPartOf N8f72650a944c42058df365a3be95f516
15 Nad2845136d1e432da39fcb32a9d8262c
16 sg:journal.1356894
17 schema:name A Note on Transformed Density Rejection
18 schema:pagination 187-192
19 schema:productId N5187b67e5b6347f39b8ffd135ae09e69
20 N82438e4cc0744488bb6af56ef32d3069
21 Ncbb7832d59624855b6e8eca22ceac51a
22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045252453
23 https://doi.org/10.1007/s006070070019
24 schema:sdDatePublished 2019-04-10T17:32
25 schema:sdLicense https://scigraph.springernature.com/explorer/license/
26 schema:sdPublisher Na428c15826f9464789de83fc5ef5ed2d
27 schema:url http://link.springer.com/10.1007%2Fs006070070019
28 sgo:license sg:explorer/license/
29 sgo:sdDataset articles
30 rdf:type schema:ScholarlyArticle
31 N2856c8d629e743c4bba26f8691edbab4 rdf:first sg:person.016226764632.14
32 rdf:rest rdf:nil
33 N5187b67e5b6347f39b8ffd135ae09e69 schema:name readcube_id
34 schema:value d78dd501e397d44f703da8d787eb35541b587a6b1ac1c514b330b3a42b606144
35 rdf:type schema:PropertyValue
36 N82438e4cc0744488bb6af56ef32d3069 schema:name doi
37 schema:value 10.1007/s006070070019
38 rdf:type schema:PropertyValue
39 N8f72650a944c42058df365a3be95f516 schema:issueNumber 2
40 rdf:type schema:PublicationIssue
41 Na428c15826f9464789de83fc5ef5ed2d schema:name Springer Nature - SN SciGraph project
42 rdf:type schema:Organization
43 Nad2845136d1e432da39fcb32a9d8262c schema:volumeNumber 65
44 rdf:type schema:PublicationVolume
45 Ncbb7832d59624855b6e8eca22ceac51a schema:name dimensions_id
46 schema:value pub.1045252453
47 rdf:type schema:PropertyValue
48 sg:journal.1356894 schema:issn 1436-5057
49 1521-9615
50 schema:name Computing
51 rdf:type schema:Periodical
52 sg:person.016226764632.14 schema:affiliation https://www.grid.ac/institutes/grid.15788.33
53 schema:familyName Leydold
54 schema:givenName J.
55 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016226764632.14
56 rdf:type schema:Person
57 sg:pub.10.1007/978-1-4613-8643-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035447677
58 https://doi.org/10.1007/978-1-4613-8643-8
59 rdf:type schema:CreativeWork
60 sg:pub.10.1007/bf02238128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040367890
61 https://doi.org/10.1007/bf02238128
62 rdf:type schema:CreativeWork
63 https://doi.org/10.1080/05695557408974949 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040669023
64 rdf:type schema:CreativeWork
65 https://doi.org/10.1090/s0025-5718-98-01004-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023342429
66 rdf:type schema:CreativeWork
67 https://doi.org/10.1137/0905026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062855670
68 rdf:type schema:CreativeWork
69 https://doi.org/10.1145/203082.203089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014296587
70 rdf:type schema:CreativeWork
71 https://www.grid.ac/institutes/grid.15788.33 schema:alternateName Vienna University of Economics and Business
72 schema:name Institut für Statistik Wirtschaftsuniversität Wien A-1090 Wien, Augasse 2-6, Austria e-mail: Josef.Leydold@wu-wien.ac.at, AT
73 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...