A Sparse Matrix Arithmetic Based on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Cal H$\end{document}-Matrices. Part I: Introduction ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1999-04

AUTHORS

W. Hackbusch

ABSTRACT

A class of matrices (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Cal H$\end{document}-matrices) is introduced which have the following properties. (i) They are sparse in the sense that only few data are needed for their representation. (ii) The matrix-vector multiplication is of almost linear complexity. (iii) In general, sums and products of these matrices are no longer in the same set, but their truncations to the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Cal H$\end{document}-matrix format are again of almost linear complexity. (iv) The same statement holds for the inverse of an \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Cal H$\end{document}-matrix. This paper is the first of a series and is devoted to the first introduction of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Cal H$\end{document}-matrix concept. Two concret formats are described. The first one is the simplest possible. Nevertheless, it allows the exact inversion of tridiagonal matrices. The second one is able to approximate discrete integral operators. More... »

PAGES

89-108

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s006070050015

DOI

http://dx.doi.org/10.1007/s006070050015

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1001171166


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Max Planck Society", 
          "id": "https://www.grid.ac/institutes/grid.4372.2", 
          "name": [
            "Max Planck Institut Mathematik in den Naturwissenschaften Insel str. 22--26, D-04103 Leipzig, Germany, e-mail: wh@mis.mpg.de, DE"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hackbusch", 
        "givenName": "W.", 
        "id": "sg:person.016444014103.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016444014103.75"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01396324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004208576", 
          "https://doi.org/10.1007/bf01396324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1099-1506(199707/08)4:4<273::aid-nla97>3.0.co;2-t", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012876561"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02575706", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013624951", 
          "https://doi.org/10.1007/bf02575706"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02575706", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013624951", 
          "https://doi.org/10.1007/bf02575706"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-9215-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035105173", 
          "https://doi.org/10.1007/978-3-0348-9215-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-9215-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035105173", 
          "https://doi.org/10.1007/978-3-0348-9215-5"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1999-04", 
    "datePublishedReg": "1999-04-01", 
    "description": "A class of matrices (\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$\\Cal H$\\end{document}-matrices) is introduced which have the following properties. (i) They are sparse in the sense that only few data are needed for their representation. (ii) The matrix-vector multiplication is of almost linear complexity. (iii) In general, sums and products of these matrices are no longer in the same set, but their truncations to the \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$\\Cal H$\\end{document}-matrix format are again of almost linear complexity. (iv) The same statement holds for the inverse of an \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$\\Cal H$\\end{document}-matrix. This paper is the first of a series and is devoted to the first introduction of the \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$\\Cal H$\\end{document}-matrix concept. Two concret formats are described. The first one is the simplest possible. Nevertheless, it allows the exact inversion of tridiagonal matrices. The second one is able to approximate discrete integral operators.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s006070050015", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1356894", 
        "issn": [
          "1521-9615", 
          "1436-5057"
        ], 
        "name": "Computing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "62"
      }
    ], 
    "name": "A Sparse Matrix Arithmetic Based on \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$\\Cal H$\\end{document}-Matrices. Part I: Introduction to \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}${\\Cal H}$\\end{document}-Matrices", 
    "pagination": "89-108", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0594683ad388234bb042411a404f17c066027efa90030e1ab5c578bb56d0249c"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s006070050015"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1001171166"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s006070050015", 
      "https://app.dimensions.ai/details/publication/pub.1001171166"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:33", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000479.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s006070050015"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s006070050015'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s006070050015'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s006070050015'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s006070050015'


 

This table displays all metadata directly associated to this object as RDF triples.

76 TRIPLES      21 PREDICATES      31 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s006070050015 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N325bbb8fb8e04a2fb060e94e9d029ef2
4 schema:citation sg:pub.10.1007/978-3-0348-9215-5
5 sg:pub.10.1007/bf01396324
6 sg:pub.10.1007/bf02575706
7 https://doi.org/10.1002/(sici)1099-1506(199707/08)4:4<273::aid-nla97>3.0.co;2-t
8 schema:datePublished 1999-04
9 schema:datePublishedReg 1999-04-01
10 schema:description A class of matrices (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Cal H$\end{document}-matrices) is introduced which have the following properties. (i) They are sparse in the sense that only few data are needed for their representation. (ii) The matrix-vector multiplication is of almost linear complexity. (iii) In general, sums and products of these matrices are no longer in the same set, but their truncations to the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Cal H$\end{document}-matrix format are again of almost linear complexity. (iv) The same statement holds for the inverse of an \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Cal H$\end{document}-matrix. This paper is the first of a series and is devoted to the first introduction of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Cal H$\end{document}-matrix concept. Two concret formats are described. The first one is the simplest possible. Nevertheless, it allows the exact inversion of tridiagonal matrices. The second one is able to approximate discrete integral operators.
11 schema:genre research_article
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf N55727de0b5e24d7bbf0e3207b306dd71
15 N5d7cd0bbb9cf4b0c927b92b3fb9d6df5
16 sg:journal.1356894
17 schema:name A Sparse Matrix Arithmetic Based on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Cal H$\end{document}-Matrices. Part I: Introduction to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\Cal H}$\end{document}-Matrices
18 schema:pagination 89-108
19 schema:productId N47ad76e91df74b049ff655b0ca4014dc
20 Nae739b2ec0784c12b4012d6174b86c3a
21 Ndd0bf16d978148e68e3528920aa950e3
22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001171166
23 https://doi.org/10.1007/s006070050015
24 schema:sdDatePublished 2019-04-10T16:33
25 schema:sdLicense https://scigraph.springernature.com/explorer/license/
26 schema:sdPublisher Nabdaaba6f49048cc83bca424036c4c11
27 schema:url http://link.springer.com/10.1007/s006070050015
28 sgo:license sg:explorer/license/
29 sgo:sdDataset articles
30 rdf:type schema:ScholarlyArticle
31 N325bbb8fb8e04a2fb060e94e9d029ef2 rdf:first sg:person.016444014103.75
32 rdf:rest rdf:nil
33 N47ad76e91df74b049ff655b0ca4014dc schema:name readcube_id
34 schema:value 0594683ad388234bb042411a404f17c066027efa90030e1ab5c578bb56d0249c
35 rdf:type schema:PropertyValue
36 N55727de0b5e24d7bbf0e3207b306dd71 schema:issueNumber 2
37 rdf:type schema:PublicationIssue
38 N5d7cd0bbb9cf4b0c927b92b3fb9d6df5 schema:volumeNumber 62
39 rdf:type schema:PublicationVolume
40 Nabdaaba6f49048cc83bca424036c4c11 schema:name Springer Nature - SN SciGraph project
41 rdf:type schema:Organization
42 Nae739b2ec0784c12b4012d6174b86c3a schema:name dimensions_id
43 schema:value pub.1001171166
44 rdf:type schema:PropertyValue
45 Ndd0bf16d978148e68e3528920aa950e3 schema:name doi
46 schema:value 10.1007/s006070050015
47 rdf:type schema:PropertyValue
48 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
49 schema:name Mathematical Sciences
50 rdf:type schema:DefinedTerm
51 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
52 schema:name Statistics
53 rdf:type schema:DefinedTerm
54 sg:journal.1356894 schema:issn 1436-5057
55 1521-9615
56 schema:name Computing
57 rdf:type schema:Periodical
58 sg:person.016444014103.75 schema:affiliation https://www.grid.ac/institutes/grid.4372.2
59 schema:familyName Hackbusch
60 schema:givenName W.
61 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016444014103.75
62 rdf:type schema:Person
63 sg:pub.10.1007/978-3-0348-9215-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035105173
64 https://doi.org/10.1007/978-3-0348-9215-5
65 rdf:type schema:CreativeWork
66 sg:pub.10.1007/bf01396324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004208576
67 https://doi.org/10.1007/bf01396324
68 rdf:type schema:CreativeWork
69 sg:pub.10.1007/bf02575706 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013624951
70 https://doi.org/10.1007/bf02575706
71 rdf:type schema:CreativeWork
72 https://doi.org/10.1002/(sici)1099-1506(199707/08)4:4<273::aid-nla97>3.0.co;2-t schema:sameAs https://app.dimensions.ai/details/publication/pub.1012876561
73 rdf:type schema:CreativeWork
74 https://www.grid.ac/institutes/grid.4372.2 schema:alternateName Max Planck Society
75 schema:name Max Planck Institut Mathematik in den Naturwissenschaften Insel str. 22--26, D-04103 Leipzig, Germany, e-mail: wh@mis.mpg.de, DE
76 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...