Monitoring services in the Internet of Things: an optimization approach View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-09-08

AUTHORS

Aly Megahed, Jennifer A. Pazour, Ahmed Nazeem, Samir Tata, Mohamed Mohamed

ABSTRACT

Devices in Internet of Things (IoT) often offer services that allow tenants to access data of different metrics collected from sensors. These sensors can be built-in or remotely connected to such devices. Given that such monitoring services are usually invoked within devices that have limited IT resource capacities, it is impossible to collect data of all metrics in the application’s context with a very high frequency. In this paper, we propose a framework that determines which metrics to monitor, monitoring start times, the optimal allocation of metrics to devices, and the optimal monitoring frequency of these metrics, without exceeding different device-specific time-varying resource capacities. Our approach is also adaptive; it gives updated solutions whenever a trigger happens in the system necessitating the need for a change in the previous optimal decisions. We provide an implementation of our approach and present numerical results showing its usage and limitations. At the heart of our approach is an integer programming optimization model that might be hard to solve for large-sized IoT systems. Thus, we present another predictive model that predicts for the user whether our optimization-based approach would be appropriate for her system or not. That is, whether the optimization model is predicted to give optimal solutions within some user-given optimality gaps in a time less than or equal to some user-given maximum allowed time. More... »

PAGES

1-27

References to SciGraph publications

  • 2016. Revisiting Service-Oriented Architecture for the IoT: A Middleware Perspective in SERVICE-ORIENTED COMPUTING
  • 2008. Adaptive Monitoring with Dynamic Differential Tracing-Based Diagnosis in MANAGING LARGE-SCALE SERVICE DEPLOYMENT
  • 1978. On the Computational Complexity of Integer Programming Problems in OPTIMIZATION AND OPERATIONS RESEARCH
  • 2013. The Internet of Things: A Survey from the Data-Centric Perspective in MANAGING AND MINING SENSOR DATA
  • 2015-10. Adaptive Monitoring: Application of Probing to Adapt Passive Monitoring in JOURNAL OF NETWORK AND SYSTEMS MANAGEMENT
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00607-018-0658-x

    DOI

    http://dx.doi.org/10.1007/s00607-018-0658-x

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1106896068


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Numerical and Computational Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "IBM Research - Almaden", 
              "id": "https://www.grid.ac/institutes/grid.481551.c", 
              "name": [
                "IBM Research, Almaden Research Center, 650 Harry Road, 95120, San Jose, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Megahed", 
            "givenName": "Aly", 
            "id": "sg:person.07757303543.54", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07757303543.54"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Rensselaer Polytechnic Institute", 
              "id": "https://www.grid.ac/institutes/grid.33647.35", 
              "name": [
                "Rensselaer Polytechnic Institute, 110 Eighth Street, 12180, Troy, NY, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pazour", 
            "givenName": "Jennifer A.", 
            "id": "sg:person.01240107270.68", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01240107270.68"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "IBM Research - Almaden", 
              "id": "https://www.grid.ac/institutes/grid.481551.c", 
              "name": [
                "IBM Research, Almaden Research Center, 650 Harry Road, 95120, San Jose, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Nazeem", 
            "givenName": "Ahmed", 
            "id": "sg:person.011063276020.44", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011063276020.44"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "IBM Research - Almaden", 
              "id": "https://www.grid.ac/institutes/grid.481551.c", 
              "name": [
                "IBM Research, Almaden Research Center, 650 Harry Road, 95120, San Jose, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tata", 
            "givenName": "Samir", 
            "id": "sg:person.010211661267.33", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010211661267.33"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "IBM Research - Almaden", 
              "id": "https://www.grid.ac/institutes/grid.481551.c", 
              "name": [
                "IBM Research, Almaden Research Center, 650 Harry Road, 95120, San Jose, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mohamed", 
            "givenName": "Mohamed", 
            "id": "sg:person.016624542602.45", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016624542602.45"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.ijpe.2014.09.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002637095"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.parco.2004.04.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004739575"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4614-6309-2_12", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006830020", 
              "https://doi.org/10.1007/978-1-4614-6309-2_12"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.future.2013.01.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011867666"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-87353-2_13", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013020844", 
              "https://doi.org/10.1007/978-3-540-87353-2_13"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-87353-2_13", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013020844", 
              "https://doi.org/10.1007/978-3-540-87353-2_13"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/17517575.2012.683812", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013737933"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/0740817x.2015.1110270", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013800485"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/1814433.1814463", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017547498"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cie.2016.09.023", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030365251"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.comnet.2013.04.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034212529"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3390/s16071069", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044314149"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-46295-0_1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044924199", 
              "https://doi.org/10.1007/978-3-319-46295-0_1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/2898442.2898444", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045414552"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-95322-4_17", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048514742", 
              "https://doi.org/10.1007/978-3-642-95322-4_17"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10922-014-9330-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049754611", 
              "https://doi.org/10.1007/s10922-014-9330-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/comjnl/bxq018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059480129"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/jsac.2016.2621398", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061319083"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/jsen.2013.2263379", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061322674"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tii.2014.2306397", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061632460"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4028/www.scientific.net/amm.121-126.2421", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1071901111"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icicta.2010.650", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093562263"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/issnip.2013.6529836", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093763242"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/nomsw.2010.5486569", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094066550"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/fbie.2009.5405813", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094274904"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/scc.2017.55", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094307136"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/aims.2017.14", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094451050"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/bigdata.2015.7363816", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094541058"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/wirelessvitae.2011.5940920", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094630373"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/ipdps.2009.5161234", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095750976"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5220/0003388602320239", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099548399"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-09-08", 
        "datePublishedReg": "2018-09-08", 
        "description": "Devices in Internet of Things (IoT) often offer services that allow tenants to access data of different metrics collected from sensors. These sensors can be built-in or remotely connected to such devices. Given that such monitoring services are usually invoked within devices that have limited IT resource capacities, it is impossible to collect data of all metrics in the application\u2019s context with a very high frequency. In this paper, we propose a framework that determines which metrics to monitor, monitoring start times, the optimal allocation of metrics to devices, and the optimal monitoring frequency of these metrics, without exceeding different device-specific time-varying resource capacities. Our approach is also adaptive; it gives updated solutions whenever a trigger happens in the system necessitating the need for a change in the previous optimal decisions. We provide an implementation of our approach and present numerical results showing its usage and limitations. At the heart of our approach is an integer programming optimization model that might be hard to solve for large-sized IoT systems. Thus, we present another predictive model that predicts for the user whether our optimization-based approach would be appropriate for her system or not. That is, whether the optimization model is predicted to give optimal solutions within some user-given optimality gaps in a time less than or equal to some user-given maximum allowed time.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00607-018-0658-x", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1356894", 
            "issn": [
              "1521-9615", 
              "1436-5057"
            ], 
            "name": "Computing", 
            "type": "Periodical"
          }
        ], 
        "name": "Monitoring services in the Internet of Things: an optimization approach", 
        "pagination": "1-27", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "f60253d9e5e7965e04b28ab7222ecff95aaab5b993af45f2b1646b9fb1c4f1f2"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00607-018-0658-x"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1106896068"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00607-018-0658-x", 
          "https://app.dimensions.ai/details/publication/pub.1106896068"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T13:18", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000517.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs00607-018-0658-x"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00607-018-0658-x'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00607-018-0658-x'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00607-018-0658-x'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00607-018-0658-x'


     

    This table displays all metadata directly associated to this object as RDF triples.

    181 TRIPLES      21 PREDICATES      54 URIs      16 LITERALS      5 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00607-018-0658-x schema:about anzsrc-for:01
    2 anzsrc-for:0103
    3 schema:author N3dcaa71352b54aee92ccf7434dc97493
    4 schema:citation sg:pub.10.1007/978-1-4614-6309-2_12
    5 sg:pub.10.1007/978-3-319-46295-0_1
    6 sg:pub.10.1007/978-3-540-87353-2_13
    7 sg:pub.10.1007/978-3-642-95322-4_17
    8 sg:pub.10.1007/s10922-014-9330-8
    9 https://doi.org/10.1016/j.cie.2016.09.023
    10 https://doi.org/10.1016/j.comnet.2013.04.001
    11 https://doi.org/10.1016/j.future.2013.01.010
    12 https://doi.org/10.1016/j.ijpe.2014.09.001
    13 https://doi.org/10.1016/j.parco.2004.04.001
    14 https://doi.org/10.1080/0740817x.2015.1110270
    15 https://doi.org/10.1080/17517575.2012.683812
    16 https://doi.org/10.1093/comjnl/bxq018
    17 https://doi.org/10.1109/aims.2017.14
    18 https://doi.org/10.1109/bigdata.2015.7363816
    19 https://doi.org/10.1109/fbie.2009.5405813
    20 https://doi.org/10.1109/icicta.2010.650
    21 https://doi.org/10.1109/ipdps.2009.5161234
    22 https://doi.org/10.1109/issnip.2013.6529836
    23 https://doi.org/10.1109/jsac.2016.2621398
    24 https://doi.org/10.1109/jsen.2013.2263379
    25 https://doi.org/10.1109/nomsw.2010.5486569
    26 https://doi.org/10.1109/scc.2017.55
    27 https://doi.org/10.1109/tii.2014.2306397
    28 https://doi.org/10.1109/wirelessvitae.2011.5940920
    29 https://doi.org/10.1145/1814433.1814463
    30 https://doi.org/10.1145/2898442.2898444
    31 https://doi.org/10.3390/s16071069
    32 https://doi.org/10.4028/www.scientific.net/amm.121-126.2421
    33 https://doi.org/10.5220/0003388602320239
    34 schema:datePublished 2018-09-08
    35 schema:datePublishedReg 2018-09-08
    36 schema:description Devices in Internet of Things (IoT) often offer services that allow tenants to access data of different metrics collected from sensors. These sensors can be built-in or remotely connected to such devices. Given that such monitoring services are usually invoked within devices that have limited IT resource capacities, it is impossible to collect data of all metrics in the application’s context with a very high frequency. In this paper, we propose a framework that determines which metrics to monitor, monitoring start times, the optimal allocation of metrics to devices, and the optimal monitoring frequency of these metrics, without exceeding different device-specific time-varying resource capacities. Our approach is also adaptive; it gives updated solutions whenever a trigger happens in the system necessitating the need for a change in the previous optimal decisions. We provide an implementation of our approach and present numerical results showing its usage and limitations. At the heart of our approach is an integer programming optimization model that might be hard to solve for large-sized IoT systems. Thus, we present another predictive model that predicts for the user whether our optimization-based approach would be appropriate for her system or not. That is, whether the optimization model is predicted to give optimal solutions within some user-given optimality gaps in a time less than or equal to some user-given maximum allowed time.
    37 schema:genre research_article
    38 schema:inLanguage en
    39 schema:isAccessibleForFree false
    40 schema:isPartOf sg:journal.1356894
    41 schema:name Monitoring services in the Internet of Things: an optimization approach
    42 schema:pagination 1-27
    43 schema:productId N01581fbb0fd44832a20d197609d960e1
    44 N3d76e466e8754bc69346406e80631798
    45 Nb05ebd6aa39442ccb1e367300a51ad4d
    46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106896068
    47 https://doi.org/10.1007/s00607-018-0658-x
    48 schema:sdDatePublished 2019-04-10T13:18
    49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    50 schema:sdPublisher N7ec0ebfa965f4cf7924f8bb2212dc9b9
    51 schema:url http://link.springer.com/10.1007%2Fs00607-018-0658-x
    52 sgo:license sg:explorer/license/
    53 sgo:sdDataset articles
    54 rdf:type schema:ScholarlyArticle
    55 N01581fbb0fd44832a20d197609d960e1 schema:name doi
    56 schema:value 10.1007/s00607-018-0658-x
    57 rdf:type schema:PropertyValue
    58 N0221e2092fb84da8b9bfe0c0c5f85c6a rdf:first sg:person.011063276020.44
    59 rdf:rest Na096aee4589f44e08fc8ab2290b944f1
    60 N12106fb2c789449cbd8f9f938c6f0dbf rdf:first sg:person.01240107270.68
    61 rdf:rest N0221e2092fb84da8b9bfe0c0c5f85c6a
    62 N17ba9301d97c4be0b6c12dc1fc1cdaa0 rdf:first sg:person.016624542602.45
    63 rdf:rest rdf:nil
    64 N3d76e466e8754bc69346406e80631798 schema:name readcube_id
    65 schema:value f60253d9e5e7965e04b28ab7222ecff95aaab5b993af45f2b1646b9fb1c4f1f2
    66 rdf:type schema:PropertyValue
    67 N3dcaa71352b54aee92ccf7434dc97493 rdf:first sg:person.07757303543.54
    68 rdf:rest N12106fb2c789449cbd8f9f938c6f0dbf
    69 N7ec0ebfa965f4cf7924f8bb2212dc9b9 schema:name Springer Nature - SN SciGraph project
    70 rdf:type schema:Organization
    71 Na096aee4589f44e08fc8ab2290b944f1 rdf:first sg:person.010211661267.33
    72 rdf:rest N17ba9301d97c4be0b6c12dc1fc1cdaa0
    73 Nb05ebd6aa39442ccb1e367300a51ad4d schema:name dimensions_id
    74 schema:value pub.1106896068
    75 rdf:type schema:PropertyValue
    76 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    77 schema:name Mathematical Sciences
    78 rdf:type schema:DefinedTerm
    79 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
    80 schema:name Numerical and Computational Mathematics
    81 rdf:type schema:DefinedTerm
    82 sg:journal.1356894 schema:issn 1436-5057
    83 1521-9615
    84 schema:name Computing
    85 rdf:type schema:Periodical
    86 sg:person.010211661267.33 schema:affiliation https://www.grid.ac/institutes/grid.481551.c
    87 schema:familyName Tata
    88 schema:givenName Samir
    89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010211661267.33
    90 rdf:type schema:Person
    91 sg:person.011063276020.44 schema:affiliation https://www.grid.ac/institutes/grid.481551.c
    92 schema:familyName Nazeem
    93 schema:givenName Ahmed
    94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011063276020.44
    95 rdf:type schema:Person
    96 sg:person.01240107270.68 schema:affiliation https://www.grid.ac/institutes/grid.33647.35
    97 schema:familyName Pazour
    98 schema:givenName Jennifer A.
    99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01240107270.68
    100 rdf:type schema:Person
    101 sg:person.016624542602.45 schema:affiliation https://www.grid.ac/institutes/grid.481551.c
    102 schema:familyName Mohamed
    103 schema:givenName Mohamed
    104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016624542602.45
    105 rdf:type schema:Person
    106 sg:person.07757303543.54 schema:affiliation https://www.grid.ac/institutes/grid.481551.c
    107 schema:familyName Megahed
    108 schema:givenName Aly
    109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07757303543.54
    110 rdf:type schema:Person
    111 sg:pub.10.1007/978-1-4614-6309-2_12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006830020
    112 https://doi.org/10.1007/978-1-4614-6309-2_12
    113 rdf:type schema:CreativeWork
    114 sg:pub.10.1007/978-3-319-46295-0_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044924199
    115 https://doi.org/10.1007/978-3-319-46295-0_1
    116 rdf:type schema:CreativeWork
    117 sg:pub.10.1007/978-3-540-87353-2_13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013020844
    118 https://doi.org/10.1007/978-3-540-87353-2_13
    119 rdf:type schema:CreativeWork
    120 sg:pub.10.1007/978-3-642-95322-4_17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048514742
    121 https://doi.org/10.1007/978-3-642-95322-4_17
    122 rdf:type schema:CreativeWork
    123 sg:pub.10.1007/s10922-014-9330-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049754611
    124 https://doi.org/10.1007/s10922-014-9330-8
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1016/j.cie.2016.09.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030365251
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1016/j.comnet.2013.04.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034212529
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1016/j.future.2013.01.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011867666
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1016/j.ijpe.2014.09.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002637095
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1016/j.parco.2004.04.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004739575
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1080/0740817x.2015.1110270 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013800485
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1080/17517575.2012.683812 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013737933
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1093/comjnl/bxq018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059480129
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1109/aims.2017.14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094451050
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1109/bigdata.2015.7363816 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094541058
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1109/fbie.2009.5405813 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094274904
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1109/icicta.2010.650 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093562263
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1109/ipdps.2009.5161234 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095750976
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1109/issnip.2013.6529836 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093763242
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1109/jsac.2016.2621398 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061319083
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1109/jsen.2013.2263379 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061322674
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1109/nomsw.2010.5486569 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094066550
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1109/scc.2017.55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094307136
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.1109/tii.2014.2306397 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061632460
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.1109/wirelessvitae.2011.5940920 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094630373
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.1145/1814433.1814463 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017547498
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.1145/2898442.2898444 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045414552
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.3390/s16071069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044314149
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.4028/www.scientific.net/amm.121-126.2421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071901111
    173 rdf:type schema:CreativeWork
    174 https://doi.org/10.5220/0003388602320239 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099548399
    175 rdf:type schema:CreativeWork
    176 https://www.grid.ac/institutes/grid.33647.35 schema:alternateName Rensselaer Polytechnic Institute
    177 schema:name Rensselaer Polytechnic Institute, 110 Eighth Street, 12180, Troy, NY, USA
    178 rdf:type schema:Organization
    179 https://www.grid.ac/institutes/grid.481551.c schema:alternateName IBM Research - Almaden
    180 schema:name IBM Research, Almaden Research Center, 650 Harry Road, 95120, San Jose, CA, USA
    181 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...