Low-Rank Approximation of Integral Operators by Interpolation View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2004-06

AUTHORS

Steffen Börm, Lars Grasedyck

ABSTRACT

A central component of the analysis of panel clustering techniques for the approximation of integral operators is the so-called η -admissibility condition “ min {diam(τ),diam(σ)} ≤ 2ηdist(τ,σ)” that ensures that the kernel function is approximated only on those parts of the domain that are far from the singularity. Typical techniques based on a Taylor expansion of the kernel function require a subdomain to be “far enough” from the singularity such that the parameter η has to be smaller than a given constant depending on properties of the kernel function. In this paper, we demonstrate that any η is sufficient if interpolation instead of Taylor expansion␣is␣used for the kernel approximation, which paves the way for grey-box panel clustering algorithms. More... »

PAGES

325-332

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00607-003-0036-0

DOI

http://dx.doi.org/10.1007/s00607-003-0036-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1033172879


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Mathematics in the Sciences", 
          "id": "https://www.grid.ac/institutes/grid.419532.8", 
          "name": [
            "Max-Planck-Institute for Mathematics in the Sciences, Inselstr. 22-26, D-04103, Leipzig, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "B\u00f6rm", 
        "givenName": "Steffen", 
        "id": "sg:person.016063530723.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016063530723.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Mathematics in the Sciences", 
          "id": "https://www.grid.ac/institutes/grid.419532.8", 
          "name": [
            "Max-Planck-Institute for Mathematics in the Sciences, Inselstr. 22-26, D-04103, Leipzig, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Grasedyck", 
        "givenName": "Lars", 
        "id": "sg:person.01164321005.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01164321005.49"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s006070050015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001171166", 
          "https://doi.org/10.1007/s006070050015"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01396324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004208576", 
          "https://doi.org/10.1007/bf01396324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s0036141098333451", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062876528"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/pl00021408", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085169737", 
          "https://doi.org/10.1007/pl00021408"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2004-06", 
    "datePublishedReg": "2004-06-01", 
    "description": "A central component of the analysis of panel clustering techniques for the approximation of integral operators is the so-called \u03b7 -admissibility condition \u201c min {diam(\u03c4),diam(\u03c3)} \u2264 2\u03b7dist(\u03c4,\u03c3)\u201d that ensures that the kernel function is approximated only on those parts of the domain that are far from the singularity. Typical techniques based on a Taylor expansion of the kernel function require a subdomain to be \u201cfar enough\u201d from the singularity such that the parameter \u03b7 has to be smaller than a given constant depending on properties of the kernel function. In this paper, we demonstrate that any \u03b7 is sufficient if interpolation instead of Taylor expansion\u2423is\u2423used for the kernel approximation, which paves the way for grey-box panel clustering algorithms.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00607-003-0036-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1356894", 
        "issn": [
          "1521-9615", 
          "1436-5057"
        ], 
        "name": "Computing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3-4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "72"
      }
    ], 
    "name": "Low-Rank Approximation of Integral Operators by Interpolation", 
    "pagination": "325-332", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "9e07afca24334bb44c9e5abcfacce19d08c85d407a82771c14b8c6f4cad0f5b6"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00607-003-0036-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1033172879"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00607-003-0036-0", 
      "https://app.dimensions.ai/details/publication/pub.1033172879"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000514.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00607-003-0036-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00607-003-0036-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00607-003-0036-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00607-003-0036-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00607-003-0036-0'


 

This table displays all metadata directly associated to this object as RDF triples.

83 TRIPLES      21 PREDICATES      31 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00607-003-0036-0 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author Nda4d5d74c5304718b58e68bad34dd47a
4 schema:citation sg:pub.10.1007/bf01396324
5 sg:pub.10.1007/pl00021408
6 sg:pub.10.1007/s006070050015
7 https://doi.org/10.1137/s0036141098333451
8 schema:datePublished 2004-06
9 schema:datePublishedReg 2004-06-01
10 schema:description A central component of the analysis of panel clustering techniques for the approximation of integral operators is the so-called η -admissibility condition “ min {diam(τ),diam(σ)} ≤ 2ηdist(τ,σ)” that ensures that the kernel function is approximated only on those parts of the domain that are far from the singularity. Typical techniques based on a Taylor expansion of the kernel function require a subdomain to be “far enough” from the singularity such that the parameter η has to be smaller than a given constant depending on properties of the kernel function. In this paper, we demonstrate that any η is sufficient if interpolation instead of Taylor expansion␣is␣used for the kernel approximation, which paves the way for grey-box panel clustering algorithms.
11 schema:genre research_article
12 schema:inLanguage en
13 schema:isAccessibleForFree true
14 schema:isPartOf Nbd1708ee91a84589b31fe9c245765b73
15 Nfc19d6a9c029465a9575650951780a4f
16 sg:journal.1356894
17 schema:name Low-Rank Approximation of Integral Operators by Interpolation
18 schema:pagination 325-332
19 schema:productId N004c8a43272e43e6b0380c17430f7ce9
20 N74e5a42fc12f42d395369bc650dddcf6
21 Nbb71c34f53934384b05a9a5a7b9fd8de
22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033172879
23 https://doi.org/10.1007/s00607-003-0036-0
24 schema:sdDatePublished 2019-04-10T19:09
25 schema:sdLicense https://scigraph.springernature.com/explorer/license/
26 schema:sdPublisher N9bb99137790c4b98b629bc9aae330643
27 schema:url http://link.springer.com/10.1007%2Fs00607-003-0036-0
28 sgo:license sg:explorer/license/
29 sgo:sdDataset articles
30 rdf:type schema:ScholarlyArticle
31 N004c8a43272e43e6b0380c17430f7ce9 schema:name dimensions_id
32 schema:value pub.1033172879
33 rdf:type schema:PropertyValue
34 N74e5a42fc12f42d395369bc650dddcf6 schema:name readcube_id
35 schema:value 9e07afca24334bb44c9e5abcfacce19d08c85d407a82771c14b8c6f4cad0f5b6
36 rdf:type schema:PropertyValue
37 N9bb99137790c4b98b629bc9aae330643 schema:name Springer Nature - SN SciGraph project
38 rdf:type schema:Organization
39 Nbb71c34f53934384b05a9a5a7b9fd8de schema:name doi
40 schema:value 10.1007/s00607-003-0036-0
41 rdf:type schema:PropertyValue
42 Nbd1708ee91a84589b31fe9c245765b73 schema:issueNumber 3-4
43 rdf:type schema:PublicationIssue
44 Nda4d5d74c5304718b58e68bad34dd47a rdf:first sg:person.016063530723.23
45 rdf:rest Ndcf7f722fdce4569a1fa4058209f210e
46 Ndcf7f722fdce4569a1fa4058209f210e rdf:first sg:person.01164321005.49
47 rdf:rest rdf:nil
48 Nfc19d6a9c029465a9575650951780a4f schema:volumeNumber 72
49 rdf:type schema:PublicationVolume
50 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
51 schema:name Mathematical Sciences
52 rdf:type schema:DefinedTerm
53 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
54 schema:name Numerical and Computational Mathematics
55 rdf:type schema:DefinedTerm
56 sg:journal.1356894 schema:issn 1436-5057
57 1521-9615
58 schema:name Computing
59 rdf:type schema:Periodical
60 sg:person.01164321005.49 schema:affiliation https://www.grid.ac/institutes/grid.419532.8
61 schema:familyName Grasedyck
62 schema:givenName Lars
63 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01164321005.49
64 rdf:type schema:Person
65 sg:person.016063530723.23 schema:affiliation https://www.grid.ac/institutes/grid.419532.8
66 schema:familyName Börm
67 schema:givenName Steffen
68 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016063530723.23
69 rdf:type schema:Person
70 sg:pub.10.1007/bf01396324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004208576
71 https://doi.org/10.1007/bf01396324
72 rdf:type schema:CreativeWork
73 sg:pub.10.1007/pl00021408 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085169737
74 https://doi.org/10.1007/pl00021408
75 rdf:type schema:CreativeWork
76 sg:pub.10.1007/s006070050015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001171166
77 https://doi.org/10.1007/s006070050015
78 rdf:type schema:CreativeWork
79 https://doi.org/10.1137/s0036141098333451 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062876528
80 rdf:type schema:CreativeWork
81 https://www.grid.ac/institutes/grid.419532.8 schema:alternateName Max Planck Institute for Mathematics in the Sciences
82 schema:name Max-Planck-Institute for Mathematics in the Sciences, Inselstr. 22-26, D-04103, Leipzig, Germany
83 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...