Data-sparse Approximation by Adaptive ℋ2-Matrices View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2002-09

AUTHORS

W. Hackbusch, S. Börm

ABSTRACT

A class of matrices (ℋ2-matrices) has recently been introduced for storing discretisations of elliptic problems and integral operators from the BEM. These matrices have the following properties: (i) They are sparse in the sense that only few data are needed for their representation. (ii) The matrix-vector multiplication is of linear complexity. (iii) In general, sums and products of these matrices are no longer in the same set, but after truncation to the ℋ2-matrix format these operations are again of quasi-linear complexity. We introduce the basic ideas of ℋ- and ℋ2-matrices and present an algorithm that adaptively computes approximations of general matrices in the latter format. More... »

PAGES

1-35

Journal

TITLE

Computing

ISSUE

1

VOLUME

69

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00607-002-1450-4

DOI

http://dx.doi.org/10.1007/s00607-002-1450-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1032782830


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Max Planck Society", 
          "id": "https://www.grid.ac/institutes/grid.4372.2", 
          "name": [
            "Max-Planck-Institut, Mathematik in den Naturwissenschaften Inselstrasse 22\u201326 D-04103 Leipzig Germany e-mail: {wh, sbo}@mis.mpg.de www: http://www.mis.mpg.de/scicomp/, DE"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hackbusch", 
        "givenName": "W.", 
        "id": "sg:person.016444014103.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016444014103.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Society", 
          "id": "https://www.grid.ac/institutes/grid.4372.2", 
          "name": [
            "Max-Planck-Institut, Mathematik in den Naturwissenschaften Inselstrasse 22\u201326 D-04103 Leipzig Germany e-mail: {wh, sbo}@mis.mpg.de www: http://www.mis.mpg.de/scicomp/, DE"
          ], 
          "type": "Organization"
        }, 
        "familyName": "B\u00f6rm", 
        "givenName": "S.", 
        "id": "sg:person.016063530723.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016063530723.23"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s006070050015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001171166", 
          "https://doi.org/10.1007/s006070050015"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01396324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004208576", 
          "https://doi.org/10.1007/bf01396324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s006070050045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018150128", 
          "https://doi.org/10.1007/s006070050045"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-9215-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035105173", 
          "https://doi.org/10.1007/978-3-0348-9215-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-9215-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035105173", 
          "https://doi.org/10.1007/978-3-0348-9215-5"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2002-09", 
    "datePublishedReg": "2002-09-01", 
    "description": "A class of matrices (\u210b2-matrices) has recently been introduced for storing discretisations of elliptic problems and integral operators from the BEM. These matrices have the following properties: (i) They are sparse in the sense that only few data are needed for their representation. (ii) The matrix-vector multiplication is of linear complexity. (iii) In general, sums and products of these matrices are no longer in the same set, but after truncation to the \u210b2-matrix format these operations are again of quasi-linear complexity. We introduce the basic ideas of \u210b- and \u210b2-matrices and present an algorithm that adaptively computes approximations of general matrices in the latter format.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00607-002-1450-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1356894", 
        "issn": [
          "1521-9615", 
          "1436-5057"
        ], 
        "name": "Computing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "69"
      }
    ], 
    "name": "Data-sparse Approximation by Adaptive \u210b2-Matrices", 
    "pagination": "1-35", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "9c2c3d0182a0b5f600b8962c9c0e7813c0145130f6972a072a12014587d7b2af"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00607-002-1450-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1032782830"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00607-002-1450-4", 
      "https://app.dimensions.ai/details/publication/pub.1032782830"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:01", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000513.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00607-002-1450-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00607-002-1450-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00607-002-1450-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00607-002-1450-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00607-002-1450-4'


 

This table displays all metadata directly associated to this object as RDF triples.

84 TRIPLES      21 PREDICATES      31 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00607-002-1450-4 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nb2b0555eda7d4c719264fb502dc8e867
4 schema:citation sg:pub.10.1007/978-3-0348-9215-5
5 sg:pub.10.1007/bf01396324
6 sg:pub.10.1007/s006070050015
7 sg:pub.10.1007/s006070050045
8 schema:datePublished 2002-09
9 schema:datePublishedReg 2002-09-01
10 schema:description A class of matrices (ℋ2-matrices) has recently been introduced for storing discretisations of elliptic problems and integral operators from the BEM. These matrices have the following properties: (i) They are sparse in the sense that only few data are needed for their representation. (ii) The matrix-vector multiplication is of linear complexity. (iii) In general, sums and products of these matrices are no longer in the same set, but after truncation to the ℋ2-matrix format these operations are again of quasi-linear complexity. We introduce the basic ideas of ℋ- and ℋ2-matrices and present an algorithm that adaptively computes approximations of general matrices in the latter format.
11 schema:genre research_article
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf N90e1341e3c9e4fe2b36215f2275c3f86
15 Nfb81571bea8a4ecd99b05717371c4efe
16 sg:journal.1356894
17 schema:name Data-sparse Approximation by Adaptive ℋ2-Matrices
18 schema:pagination 1-35
19 schema:productId N35dec67ab92445f2a977ca84c43d0225
20 N6adf1829b8574d32a0a04fd4bc3d945a
21 N7c39816b411c418c82d3e0405ef53225
22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032782830
23 https://doi.org/10.1007/s00607-002-1450-4
24 schema:sdDatePublished 2019-04-10T15:01
25 schema:sdLicense https://scigraph.springernature.com/explorer/license/
26 schema:sdPublisher N5e8641643d1e46dcbfc5812939d3b500
27 schema:url http://link.springer.com/10.1007%2Fs00607-002-1450-4
28 sgo:license sg:explorer/license/
29 sgo:sdDataset articles
30 rdf:type schema:ScholarlyArticle
31 N35dec67ab92445f2a977ca84c43d0225 schema:name dimensions_id
32 schema:value pub.1032782830
33 rdf:type schema:PropertyValue
34 N5e8641643d1e46dcbfc5812939d3b500 schema:name Springer Nature - SN SciGraph project
35 rdf:type schema:Organization
36 N6adf1829b8574d32a0a04fd4bc3d945a schema:name readcube_id
37 schema:value 9c2c3d0182a0b5f600b8962c9c0e7813c0145130f6972a072a12014587d7b2af
38 rdf:type schema:PropertyValue
39 N7c39816b411c418c82d3e0405ef53225 schema:name doi
40 schema:value 10.1007/s00607-002-1450-4
41 rdf:type schema:PropertyValue
42 N90e1341e3c9e4fe2b36215f2275c3f86 schema:volumeNumber 69
43 rdf:type schema:PublicationVolume
44 Nb2b0555eda7d4c719264fb502dc8e867 rdf:first sg:person.016444014103.75
45 rdf:rest Nd479b94c995a4dbd833c1ee58d32995b
46 Nd479b94c995a4dbd833c1ee58d32995b rdf:first sg:person.016063530723.23
47 rdf:rest rdf:nil
48 Nfb81571bea8a4ecd99b05717371c4efe schema:issueNumber 1
49 rdf:type schema:PublicationIssue
50 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
51 schema:name Mathematical Sciences
52 rdf:type schema:DefinedTerm
53 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
54 schema:name Pure Mathematics
55 rdf:type schema:DefinedTerm
56 sg:journal.1356894 schema:issn 1436-5057
57 1521-9615
58 schema:name Computing
59 rdf:type schema:Periodical
60 sg:person.016063530723.23 schema:affiliation https://www.grid.ac/institutes/grid.4372.2
61 schema:familyName Börm
62 schema:givenName S.
63 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016063530723.23
64 rdf:type schema:Person
65 sg:person.016444014103.75 schema:affiliation https://www.grid.ac/institutes/grid.4372.2
66 schema:familyName Hackbusch
67 schema:givenName W.
68 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016444014103.75
69 rdf:type schema:Person
70 sg:pub.10.1007/978-3-0348-9215-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035105173
71 https://doi.org/10.1007/978-3-0348-9215-5
72 rdf:type schema:CreativeWork
73 sg:pub.10.1007/bf01396324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004208576
74 https://doi.org/10.1007/bf01396324
75 rdf:type schema:CreativeWork
76 sg:pub.10.1007/s006070050015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001171166
77 https://doi.org/10.1007/s006070050015
78 rdf:type schema:CreativeWork
79 sg:pub.10.1007/s006070050045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018150128
80 https://doi.org/10.1007/s006070050045
81 rdf:type schema:CreativeWork
82 https://www.grid.ac/institutes/grid.4372.2 schema:alternateName Max Planck Society
83 schema:name Max-Planck-Institut, Mathematik in den Naturwissenschaften Inselstrasse 22–26 D-04103 Leipzig Germany e-mail: {wh, sbo}@mis.mpg.de www: http://www.mis.mpg.de/scicomp/, DE
84 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...