Follower, predecessor, and extender entropies View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-10-25

AUTHORS

Thomas French, Ronnie Pavlov

ABSTRACT

Using the follower/predecessor/extender set sequences defined by the first author, we define quantities which we call the follower/predecessor/extender entropies, which can be associated to any shift space. We analyze the behavior of these quantities under conjugacies and factor maps, most notably showing that extender entropy is a conjugacy invariant and that having follower entropy zero is a conjugacy invariant. We give some applications, including examples of shift spaces with equal entropy which can be distinguished by extender entropy, and examples of shift spaces which can be shown to not be isomorphic to their inverse by using follower/predecessor entropy. More... »

PAGES

495-510

References to SciGraph publications

  • 2002. Substitutions in Dynamics, Arithmetics and Combinatorics in NONE
  • 2005-02-01. Subshifts of quasi-finite type in INVENTIONES MATHEMATICAE
  • 1960-09. On theβ-expansions of real numbers in ACTA MATHEMATICA HUNGARICA
  • 1957-09. Representations for real numbers and their ergodic properties in ACTA MATHEMATICA HUNGARICA
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00605-018-1224-5

    DOI

    http://dx.doi.org/10.1007/s00605-018-1224-5

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1107848961


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Mathematics, University of Denver, 2390 S. York St., 80208, Denver, CO, USA", 
              "id": "http://www.grid.ac/institutes/grid.266239.a", 
              "name": [
                "Department of Mathematics, University of Denver, 2390 S. York St., 80208, Denver, CO, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "French", 
            "givenName": "Thomas", 
            "id": "sg:person.010153077123.58", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010153077123.58"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Mathematics, University of Denver, 2390 S. York St., 80208, Denver, CO, USA", 
              "id": "http://www.grid.ac/institutes/grid.266239.a", 
              "name": [
                "Department of Mathematics, University of Denver, 2390 S. York St., 80208, Denver, CO, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pavlov", 
            "givenName": "Ronnie", 
            "id": "sg:person.014654657347.35", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014654657347.35"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00222-004-0392-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010031176", 
              "https://doi.org/10.1007/s00222-004-0392-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02020331", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048516797", 
              "https://doi.org/10.1007/bf02020331"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02020954", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018173239", 
              "https://doi.org/10.1007/bf02020954"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/b13861", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018844476", 
              "https://doi.org/10.1007/b13861"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-10-25", 
        "datePublishedReg": "2018-10-25", 
        "description": "Using the follower/predecessor/extender set sequences defined by the first author, we define quantities which we call the follower/predecessor/extender entropies, which can be associated to any shift space. We analyze the behavior of these quantities under conjugacies and factor maps, most notably showing that extender entropy is a conjugacy invariant and that having follower entropy zero is a conjugacy invariant. We give some applications, including examples of shift spaces with equal entropy which can be distinguished by extender entropy, and examples of shift spaces which can be shown to not be isomorphic to their inverse by using follower/predecessor entropy.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00605-018-1224-5", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1049395", 
            "issn": [
              "0026-9255", 
              "1436-5081"
            ], 
            "name": "Monatshefte f\u00fcr Mathematik", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "188"
          }
        ], 
        "keywords": [
          "shift space", 
          "conjugacy invariant", 
          "equal entropy", 
          "invariants", 
          "entropy", 
          "space", 
          "factor maps", 
          "first author", 
          "conjugacy", 
          "zeros", 
          "inverse", 
          "quantity", 
          "applications", 
          "maps", 
          "followers", 
          "predecessors", 
          "behavior", 
          "sequence", 
          "authors", 
          "example", 
          "extender", 
          "follower/predecessor/extender", 
          "predecessor/extender", 
          "follower/predecessor/extender entropies", 
          "predecessor/extender entropies", 
          "extender entropies", 
          "follower entropy zero", 
          "entropy zero", 
          "follower/predecessor"
        ], 
        "name": "Follower, predecessor, and extender entropies", 
        "pagination": "495-510", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1107848961"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00605-018-1224-5"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00605-018-1224-5", 
          "https://app.dimensions.ai/details/publication/pub.1107848961"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-11-01T18:34", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_777.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00605-018-1224-5"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00605-018-1224-5'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00605-018-1224-5'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00605-018-1224-5'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00605-018-1224-5'


     

    This table displays all metadata directly associated to this object as RDF triples.

    110 TRIPLES      22 PREDICATES      58 URIs      46 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00605-018-1224-5 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N7df783303f134a6692551a8b893a7422
    4 schema:citation sg:pub.10.1007/b13861
    5 sg:pub.10.1007/bf02020331
    6 sg:pub.10.1007/bf02020954
    7 sg:pub.10.1007/s00222-004-0392-1
    8 schema:datePublished 2018-10-25
    9 schema:datePublishedReg 2018-10-25
    10 schema:description Using the follower/predecessor/extender set sequences defined by the first author, we define quantities which we call the follower/predecessor/extender entropies, which can be associated to any shift space. We analyze the behavior of these quantities under conjugacies and factor maps, most notably showing that extender entropy is a conjugacy invariant and that having follower entropy zero is a conjugacy invariant. We give some applications, including examples of shift spaces with equal entropy which can be distinguished by extender entropy, and examples of shift spaces which can be shown to not be isomorphic to their inverse by using follower/predecessor entropy.
    11 schema:genre article
    12 schema:inLanguage en
    13 schema:isAccessibleForFree true
    14 schema:isPartOf N0b51703a421b46e8a630f55136acad57
    15 N150bfea957b749f7ad481dd03528bc5f
    16 sg:journal.1049395
    17 schema:keywords applications
    18 authors
    19 behavior
    20 conjugacy
    21 conjugacy invariant
    22 entropy
    23 entropy zero
    24 equal entropy
    25 example
    26 extender
    27 extender entropies
    28 factor maps
    29 first author
    30 follower entropy zero
    31 follower/predecessor
    32 follower/predecessor/extender
    33 follower/predecessor/extender entropies
    34 followers
    35 invariants
    36 inverse
    37 maps
    38 predecessor/extender
    39 predecessor/extender entropies
    40 predecessors
    41 quantity
    42 sequence
    43 shift space
    44 space
    45 zeros
    46 schema:name Follower, predecessor, and extender entropies
    47 schema:pagination 495-510
    48 schema:productId N33b44418b1b54a95b33ba6be97b9edc4
    49 Nd44b97fed3dd44a8bd37eef608a57fd8
    50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107848961
    51 https://doi.org/10.1007/s00605-018-1224-5
    52 schema:sdDatePublished 2021-11-01T18:34
    53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    54 schema:sdPublisher N536d4705ce3d41e3987f64da38205e82
    55 schema:url https://doi.org/10.1007/s00605-018-1224-5
    56 sgo:license sg:explorer/license/
    57 sgo:sdDataset articles
    58 rdf:type schema:ScholarlyArticle
    59 N0b51703a421b46e8a630f55136acad57 schema:issueNumber 3
    60 rdf:type schema:PublicationIssue
    61 N150bfea957b749f7ad481dd03528bc5f schema:volumeNumber 188
    62 rdf:type schema:PublicationVolume
    63 N33b44418b1b54a95b33ba6be97b9edc4 schema:name dimensions_id
    64 schema:value pub.1107848961
    65 rdf:type schema:PropertyValue
    66 N494d4700cab54e4d85c6e9b3c07b578b rdf:first sg:person.014654657347.35
    67 rdf:rest rdf:nil
    68 N536d4705ce3d41e3987f64da38205e82 schema:name Springer Nature - SN SciGraph project
    69 rdf:type schema:Organization
    70 N7df783303f134a6692551a8b893a7422 rdf:first sg:person.010153077123.58
    71 rdf:rest N494d4700cab54e4d85c6e9b3c07b578b
    72 Nd44b97fed3dd44a8bd37eef608a57fd8 schema:name doi
    73 schema:value 10.1007/s00605-018-1224-5
    74 rdf:type schema:PropertyValue
    75 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    76 schema:name Mathematical Sciences
    77 rdf:type schema:DefinedTerm
    78 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    79 schema:name Pure Mathematics
    80 rdf:type schema:DefinedTerm
    81 sg:journal.1049395 schema:issn 0026-9255
    82 1436-5081
    83 schema:name Monatshefte für Mathematik
    84 schema:publisher Springer Nature
    85 rdf:type schema:Periodical
    86 sg:person.010153077123.58 schema:affiliation grid-institutes:grid.266239.a
    87 schema:familyName French
    88 schema:givenName Thomas
    89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010153077123.58
    90 rdf:type schema:Person
    91 sg:person.014654657347.35 schema:affiliation grid-institutes:grid.266239.a
    92 schema:familyName Pavlov
    93 schema:givenName Ronnie
    94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014654657347.35
    95 rdf:type schema:Person
    96 sg:pub.10.1007/b13861 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018844476
    97 https://doi.org/10.1007/b13861
    98 rdf:type schema:CreativeWork
    99 sg:pub.10.1007/bf02020331 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048516797
    100 https://doi.org/10.1007/bf02020331
    101 rdf:type schema:CreativeWork
    102 sg:pub.10.1007/bf02020954 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018173239
    103 https://doi.org/10.1007/bf02020954
    104 rdf:type schema:CreativeWork
    105 sg:pub.10.1007/s00222-004-0392-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010031176
    106 https://doi.org/10.1007/s00222-004-0392-1
    107 rdf:type schema:CreativeWork
    108 grid-institutes:grid.266239.a schema:alternateName Department of Mathematics, University of Denver, 2390 S. York St., 80208, Denver, CO, USA
    109 schema:name Department of Mathematics, University of Denver, 2390 S. York St., 80208, Denver, CO, USA
    110 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...