On the sum of digits of special sequences in finite fields View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-12

AUTHORS

Cathy Swaenepoel

ABSTRACT

In Fq, Dartyge and Sárközy introduced the notion of digits and studied some properties of the sum of digits function. We will provide sharp estimates for the number of elements of special sequences of Fq whose sum of digits is prescribed. Such special sequences of particular interest include the set of n-th powers for each n≥1 and the set of elements of order d in Fq∗ for each divisor d of q-1. We provide an optimal estimate for the number of squares whose sum of digits is prescribed. Our methods combine A. Weil bounds with character sums, Gaussian sums and exponential sums. More... »

PAGES

705-728

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00605-017-1148-5

DOI

http://dx.doi.org/10.1007/s00605-017-1148-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1100110664


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institut de Math\u00e9matiques de Marseille", 
          "id": "https://www.grid.ac/institutes/grid.473594.8", 
          "name": [
            "Aix Marseille Universit\u00e9, CNRS, Centrale Marseille, I2M, Marseille, France", 
            "Institut de Math\u00e9matiques de Marseille UMR 7373 CNRS, 163 Avenue de Luminy, Case 907, 13288, Marseille Cedex 9, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Swaenepoel", 
        "givenName": "Cathy", 
        "id": "sg:person.07704466414.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07704466414.46"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1090/s0002-9939-1991-1028291-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008244538"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0080437", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032556248", 
          "https://doi.org/10.1007/bfb0080437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0080437", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032556248", 
          "https://doi.org/10.1007/bfb0080437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11511-009-0040-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038809009", 
          "https://doi.org/10.1007/s11511-009-0040-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11511-009-0040-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038809009", 
          "https://doi.org/10.1007/s11511-009-0040-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9939-2013-11801-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059334141"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/tran/6903", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059351737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4007/annals.2010.171.1591", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071867203"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4007/annals.2010.171.1591", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071867203"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4213/mzm11091", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072365857"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7169/facm/2015.52.1.5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073638049"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4064/aa-13-3-259-265", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091797976"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jnt.2017.11.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099714946"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4064/aa-93-4-387-399", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101092725"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1109727546", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1201/b15006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109727546"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "In Fq, Dartyge and S\u00e1rk\u00f6zy introduced the notion of digits and studied some properties of the sum of digits function. We will provide sharp estimates for the number of elements of special sequences of Fq whose sum of digits is prescribed. Such special sequences of particular interest include the set of n-th powers for each n\u22651 and the set of elements of order d in Fq\u2217 for each divisor d of q-1. We provide an optimal estimate for the number of squares whose sum of digits is prescribed. Our methods combine A. Weil bounds with character sums, Gaussian sums and exponential sums.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00605-017-1148-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1049395", 
        "issn": [
          "0026-9255", 
          "1436-5081"
        ], 
        "name": "Monatshefte f\u00fcr Mathematik", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "187"
      }
    ], 
    "name": "On the sum of digits of special sequences in finite fields", 
    "pagination": "705-728", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7cb248bc598e51d75fd12faa5f9ac27557162e3f1866e963ad86582ec4859b0e"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00605-017-1148-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1100110664"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00605-017-1148-5", 
      "https://app.dimensions.ai/details/publication/pub.1100110664"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:10", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000603.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00605-017-1148-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00605-017-1148-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00605-017-1148-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00605-017-1148-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00605-017-1148-5'


 

This table displays all metadata directly associated to this object as RDF triples.

102 TRIPLES      21 PREDICATES      40 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00605-017-1148-5 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N24d36af44a2a47739275608ecba2f4ac
4 schema:citation sg:pub.10.1007/bfb0080437
5 sg:pub.10.1007/s11511-009-0040-0
6 https://app.dimensions.ai/details/publication/pub.1109727546
7 https://doi.org/10.1016/j.jnt.2017.11.012
8 https://doi.org/10.1090/s0002-9939-1991-1028291-1
9 https://doi.org/10.1090/s0002-9939-2013-11801-0
10 https://doi.org/10.1090/tran/6903
11 https://doi.org/10.1201/b15006
12 https://doi.org/10.4007/annals.2010.171.1591
13 https://doi.org/10.4064/aa-13-3-259-265
14 https://doi.org/10.4064/aa-93-4-387-399
15 https://doi.org/10.4213/mzm11091
16 https://doi.org/10.7169/facm/2015.52.1.5
17 schema:datePublished 2018-12
18 schema:datePublishedReg 2018-12-01
19 schema:description In Fq, Dartyge and Sárközy introduced the notion of digits and studied some properties of the sum of digits function. We will provide sharp estimates for the number of elements of special sequences of Fq whose sum of digits is prescribed. Such special sequences of particular interest include the set of n-th powers for each n≥1 and the set of elements of order d in Fq∗ for each divisor d of q-1. We provide an optimal estimate for the number of squares whose sum of digits is prescribed. Our methods combine A. Weil bounds with character sums, Gaussian sums and exponential sums.
20 schema:genre research_article
21 schema:inLanguage en
22 schema:isAccessibleForFree false
23 schema:isPartOf Nf094db1d81a14758addabdb238cbcf2b
24 Nfba7a1bb7d55488b9c947acb645db86a
25 sg:journal.1049395
26 schema:name On the sum of digits of special sequences in finite fields
27 schema:pagination 705-728
28 schema:productId N05da313dfea24567b6e23aba8e25b20a
29 Ncd6f5d5508414793acdd7a31a1ddcb4d
30 Ndee90c0f0f8145e983efa1a88fb7ed42
31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100110664
32 https://doi.org/10.1007/s00605-017-1148-5
33 schema:sdDatePublished 2019-04-10T20:10
34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
35 schema:sdPublisher N8cae1330978444699ed73ea9e95a3ac3
36 schema:url https://link.springer.com/10.1007%2Fs00605-017-1148-5
37 sgo:license sg:explorer/license/
38 sgo:sdDataset articles
39 rdf:type schema:ScholarlyArticle
40 N05da313dfea24567b6e23aba8e25b20a schema:name readcube_id
41 schema:value 7cb248bc598e51d75fd12faa5f9ac27557162e3f1866e963ad86582ec4859b0e
42 rdf:type schema:PropertyValue
43 N24d36af44a2a47739275608ecba2f4ac rdf:first sg:person.07704466414.46
44 rdf:rest rdf:nil
45 N8cae1330978444699ed73ea9e95a3ac3 schema:name Springer Nature - SN SciGraph project
46 rdf:type schema:Organization
47 Ncd6f5d5508414793acdd7a31a1ddcb4d schema:name doi
48 schema:value 10.1007/s00605-017-1148-5
49 rdf:type schema:PropertyValue
50 Ndee90c0f0f8145e983efa1a88fb7ed42 schema:name dimensions_id
51 schema:value pub.1100110664
52 rdf:type schema:PropertyValue
53 Nf094db1d81a14758addabdb238cbcf2b schema:issueNumber 4
54 rdf:type schema:PublicationIssue
55 Nfba7a1bb7d55488b9c947acb645db86a schema:volumeNumber 187
56 rdf:type schema:PublicationVolume
57 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
58 schema:name Mathematical Sciences
59 rdf:type schema:DefinedTerm
60 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
61 schema:name Statistics
62 rdf:type schema:DefinedTerm
63 sg:journal.1049395 schema:issn 0026-9255
64 1436-5081
65 schema:name Monatshefte für Mathematik
66 rdf:type schema:Periodical
67 sg:person.07704466414.46 schema:affiliation https://www.grid.ac/institutes/grid.473594.8
68 schema:familyName Swaenepoel
69 schema:givenName Cathy
70 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07704466414.46
71 rdf:type schema:Person
72 sg:pub.10.1007/bfb0080437 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032556248
73 https://doi.org/10.1007/bfb0080437
74 rdf:type schema:CreativeWork
75 sg:pub.10.1007/s11511-009-0040-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038809009
76 https://doi.org/10.1007/s11511-009-0040-0
77 rdf:type schema:CreativeWork
78 https://app.dimensions.ai/details/publication/pub.1109727546 schema:CreativeWork
79 https://doi.org/10.1016/j.jnt.2017.11.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099714946
80 rdf:type schema:CreativeWork
81 https://doi.org/10.1090/s0002-9939-1991-1028291-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008244538
82 rdf:type schema:CreativeWork
83 https://doi.org/10.1090/s0002-9939-2013-11801-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059334141
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1090/tran/6903 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059351737
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1201/b15006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109727546
88 rdf:type schema:CreativeWork
89 https://doi.org/10.4007/annals.2010.171.1591 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071867203
90 rdf:type schema:CreativeWork
91 https://doi.org/10.4064/aa-13-3-259-265 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091797976
92 rdf:type schema:CreativeWork
93 https://doi.org/10.4064/aa-93-4-387-399 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101092725
94 rdf:type schema:CreativeWork
95 https://doi.org/10.4213/mzm11091 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072365857
96 rdf:type schema:CreativeWork
97 https://doi.org/10.7169/facm/2015.52.1.5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073638049
98 rdf:type schema:CreativeWork
99 https://www.grid.ac/institutes/grid.473594.8 schema:alternateName Institut de Mathématiques de Marseille
100 schema:name Aix Marseille Université, CNRS, Centrale Marseille, I2M, Marseille, France
101 Institut de Mathématiques de Marseille UMR 7373 CNRS, 163 Avenue de Luminy, Case 907, 13288, Marseille Cedex 9, France
102 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...