Elementary resolution of a family of quartic Thue equations over function fields

Ontology type: schema:ScholarlyArticle      Open Access: True

Article Info

DATE

2016-01-09

AUTHORS ABSTRACT

We consider and completely solve the parametrized family of Thue equations X(X-Y)(X+Y)(X-λY)+Y4=ξ,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\begin{aligned} X(X-Y)(X+Y)(X-\lambda Y)+Y^4=\xi , \end{aligned}\end{document}where the solutions x, y come from the ring C[T]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {C}[T]$$\end{document}, the parameter λ∈C[T]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda \in \mathbb {C}[T]$$\end{document} is some non-constant polynomial and 0≠ξ∈C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0\ne \xi \in \mathbb {C}$$\end{document}. It is a function field analogue of the family solved by Mignotte, Pethő and Roth in the integer case. A feature of our proof is that we avoid the use of height bounds by considering a smaller relevant ring for which we can determine the units more easily. Because of this, the proof is short and the arguments are very elementary (in particular compared to previous results on parametrized Thue equations over function fields). More... »

PAGES

205-211

References to SciGraph publications

• 1994-09. A note on Thue's equation over function fields in MONATSHEFTE FÜR MATHEMATIK
• 2005-11-16. On a Family of Thue Equations Over Function Fields in MONATSHEFTE FÜR MATHEMATIK
• Journal

TITLE

Monatshefte für Mathematik

ISSUE

2

VOLUME

180

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00605-015-0864-y

DOI

http://dx.doi.org/10.1007/s00605-015-0864-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1033783608

Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service:

[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Mathematics, University of Salzburg, Hellbrunnerstr. 34/I, 5020, Salzburg, Austria",
"id": "http://www.grid.ac/institutes/grid.7039.d",
"name": [
"Department of Mathematics, University of Salzburg, Hellbrunnerstr. 34/I, 5020, Salzburg, Austria"
],
"type": "Organization"
},
"familyName": "Fuchs",
"givenName": "Clemens",
"id": "sg:person.011534256073.49",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011534256073.49"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Mathematics, University of Rijeka, Radmile Matej\u010di\u0107 2, 51000, Rijeka, Croatia",
"id": "http://www.grid.ac/institutes/grid.22939.33",
"name": [
"Department of Mathematics, University of Rijeka, Radmile Matej\u010di\u0107 2, 51000, Rijeka, Croatia"
],
"type": "Organization"
},
"familyName": "Jurasi\u0107",
"givenName": "Ana",
"id": "sg:person.011330157422.98",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011330157422.98"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Mathematics, University of Salzburg, Hellbrunnerstr. 34/I, 5020, Salzburg, Austria",
"id": "http://www.grid.ac/institutes/grid.7039.d",
"name": [
"Department of Mathematics, University of Salzburg, Hellbrunnerstr. 34/I, 5020, Salzburg, Austria"
],
"type": "Organization"
},
"familyName": "Paulin",
"givenName": "Roland",
"id": "sg:person.012700407027.90",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012700407027.90"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/s00605-005-0330-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1032124782",
"https://doi.org/10.1007/s00605-005-0330-3"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01301690",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1001108361",
"https://doi.org/10.1007/bf01301690"
],
"type": "CreativeWork"
}
],
"datePublished": "2016-01-09",
"datePublishedReg": "2016-01-09",
"description": "We consider and completely solve the parametrized family of Thue equations X(X-Y)(X+Y)(X-\u03bbY)+Y4=\u03be,\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\\begin{aligned} X(X-Y)(X+Y)(X-\\lambda Y)+Y^4=\\xi , \\end{aligned}\\end{document}where the solutions x,\u00a0y come from the ring C[T]\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\mathbb {C}[T]$$\\end{document}, the parameter \u03bb\u2208C[T]\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\lambda \\in \\mathbb {C}[T]$$\\end{document} is some non-constant polynomial and 0\u2260\u03be\u2208C\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$0\\ne \\xi \\in \\mathbb {C}$$\\end{document}. It is a function field analogue of the family solved by Mignotte, Peth\u0151 and Roth in the integer case. A feature of our proof is that we avoid the use of height bounds by considering a smaller relevant ring for which we can determine the units more easily. Because of this, the proof is short and the arguments are very elementary (in particular compared to previous results on parametrized Thue equations over function fields).",
"genre": "article",
"id": "sg:pub.10.1007/s00605-015-0864-y",
"inLanguage": "en",
"isAccessibleForFree": true,
"isFundedItemOf": [
{
"id": "sg:grant.6206592",
"type": "MonetaryGrant"
}
],
"isPartOf": [
{
"id": "sg:journal.1049395",
"issn": [
"0026-9255",
"1436-5081"
],
"name": "Monatshefte f\u00fcr Mathematik",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "2",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
}
],
"keywords": [
"Thue equations",
"family",
"non-constant polynomial",
"quartic Thue equations",
"parametrized family",
"function field analogue",
"solution X",
"field analogue",
"integer case",
"cases",
"height bounds",
"function fields",
"equations",
"use",
"elementary resolution",
"analogues",
"units",
"polynomials",
"Mignotte",
"features",
"proof",
"Peth\u0151",
"bounds",
"parameters",
"resolution",
"ring",
"argument",
"field",
"Roth",
"smaller relevant ring",
"relevant ring"
],
"name": "Elementary resolution of a family of quartic Thue equations over function fields",
"pagination": "205-211",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1033783608"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s00605-015-0864-y"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s00605-015-0864-y",
"https://app.dimensions.ai/details/publication/pub.1033783608"
],
"sdDataset": "articles",
"sdDatePublished": "2022-01-01T18:40",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_713.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s00605-015-0864-y"
}
]

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00605-015-0864-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00605-015-0864-y'

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00605-015-0864-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00605-015-0864-y'

This table displays all metadata directly associated to this object as RDF triples.

116 TRIPLES      22 PREDICATES      58 URIs      48 LITERALS      6 BLANK NODES

Subject Predicate Object
2 anzsrc-for:0101
4 schema:citation sg:pub.10.1007/bf01301690
5 sg:pub.10.1007/s00605-005-0330-3
6 schema:datePublished 2016-01-09
7 schema:datePublishedReg 2016-01-09
8 schema:description We consider and completely solve the parametrized family of Thue equations X(X-Y)(X+Y)(X-λY)+Y4=ξ,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\begin{aligned} X(X-Y)(X+Y)(X-\lambda Y)+Y^4=\xi , \end{aligned}\end{document}where the solutions x, y come from the ring C[T]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {C}[T]$$\end{document}, the parameter λ∈C[T]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda \in \mathbb {C}[T]$$\end{document} is some non-constant polynomial and 0≠ξ∈C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0\ne \xi \in \mathbb {C}$$\end{document}. It is a function field analogue of the family solved by Mignotte, Pethő and Roth in the integer case. A feature of our proof is that we avoid the use of height bounds by considering a smaller relevant ring for which we can determine the units more easily. Because of this, the proof is short and the arguments are very elementary (in particular compared to previous results on parametrized Thue equations over function fields).
9 schema:genre article
10 schema:inLanguage en
11 schema:isAccessibleForFree true
12 schema:isPartOf N31e133bf46624774ac8d8a4e85cf84a7
13 Ne1ca967f188e4513b390d768798237c7
14 sg:journal.1049395
15 schema:keywords Mignotte
16 Pethő
17 Roth
18 Thue equations
19 analogues
20 argument
21 bounds
22 cases
23 elementary resolution
24 equations
25 family
26 features
27 field
28 field analogue
29 function field analogue
30 function fields
31 height bounds
32 integer case
33 non-constant polynomial
34 parameters
35 parametrized family
36 polynomials
37 proof
38 quartic Thue equations
39 relevant ring
40 resolution
41 ring
42 smaller relevant ring
43 solution X
44 units
45 use
46 schema:name Elementary resolution of a family of quartic Thue equations over function fields
47 schema:pagination 205-211
48 schema:productId N13209f598840405a975ef84120aa6833
49 N37d90c8ed7a34bc3a1fe3315ca9288ca
50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033783608
51 https://doi.org/10.1007/s00605-015-0864-y
52 schema:sdDatePublished 2022-01-01T18:40
54 schema:sdPublisher N48dededbacf74156b310cb6b528bdbbc
55 schema:url https://doi.org/10.1007/s00605-015-0864-y
57 sgo:sdDataset articles
58 rdf:type schema:ScholarlyArticle
59 N13209f598840405a975ef84120aa6833 schema:name dimensions_id
60 schema:value pub.1033783608
61 rdf:type schema:PropertyValue
63 rdf:rest Ncc3e1e29f55947999255ed536dd88132
64 N31e133bf46624774ac8d8a4e85cf84a7 schema:issueNumber 2
65 rdf:type schema:PublicationIssue
66 N37d90c8ed7a34bc3a1fe3315ca9288ca schema:name doi
67 schema:value 10.1007/s00605-015-0864-y
68 rdf:type schema:PropertyValue
69 N48dededbacf74156b310cb6b528bdbbc schema:name Springer Nature - SN SciGraph project
70 rdf:type schema:Organization
71 N7b2808f212eb446faa548d31a04b9fb3 rdf:first sg:person.012700407027.90
72 rdf:rest rdf:nil
73 Ncc3e1e29f55947999255ed536dd88132 rdf:first sg:person.011330157422.98
74 rdf:rest N7b2808f212eb446faa548d31a04b9fb3
76 rdf:type schema:PublicationVolume
77 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
78 schema:name Mathematical Sciences
79 rdf:type schema:DefinedTerm
80 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
81 schema:name Pure Mathematics
82 rdf:type schema:DefinedTerm
83 sg:grant.6206592 http://pending.schema.org/fundedItem sg:pub.10.1007/s00605-015-0864-y
84 rdf:type schema:MonetaryGrant
85 sg:journal.1049395 schema:issn 0026-9255
86 1436-5081
87 schema:name Monatshefte für Mathematik
88 schema:publisher Springer Nature
89 rdf:type schema:Periodical
90 sg:person.011330157422.98 schema:affiliation grid-institutes:grid.22939.33
91 schema:familyName Jurasić
92 schema:givenName Ana
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011330157422.98
94 rdf:type schema:Person
95 sg:person.011534256073.49 schema:affiliation grid-institutes:grid.7039.d
96 schema:familyName Fuchs
97 schema:givenName Clemens
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011534256073.49
99 rdf:type schema:Person
100 sg:person.012700407027.90 schema:affiliation grid-institutes:grid.7039.d
101 schema:familyName Paulin
102 schema:givenName Roland
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012700407027.90
104 rdf:type schema:Person
105 sg:pub.10.1007/bf01301690 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001108361
106 https://doi.org/10.1007/bf01301690
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/s00605-005-0330-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032124782
109 https://doi.org/10.1007/s00605-005-0330-3
110 rdf:type schema:CreativeWork
111 grid-institutes:grid.22939.33 schema:alternateName Department of Mathematics, University of Rijeka, Radmile Matejčić 2, 51000, Rijeka, Croatia
112 schema:name Department of Mathematics, University of Rijeka, Radmile Matejčić 2, 51000, Rijeka, Croatia
113 rdf:type schema:Organization
114 grid-institutes:grid.7039.d schema:alternateName Department of Mathematics, University of Salzburg, Hellbrunnerstr. 34/I, 5020, Salzburg, Austria
115 schema:name Department of Mathematics, University of Salzburg, Hellbrunnerstr. 34/I, 5020, Salzburg, Austria
116 rdf:type schema:Organization