Ontology type: schema:ScholarlyArticle
2015-02
AUTHORSKhodabakhsh Hessami Pilehrood, Tatiana Hessami Pilehrood
ABSTRACTRecently, the present authors jointly with Tauraso found a family of binomial identities for multiple harmonic sums (MHS) on strings ({2}a,c,{2}b) that appeared to be useful for proving new congruences for MHS as well as new relations for multiple zeta values. Very recently, Zhao generalized this set of MHS identities to strings with repetitions of the above patterns and, as an application, proved the two-one formula for multiple zeta star values conjectured by Ohno and Zudilin. In this paper, we extend our approach to q-binomial identities and prove q-analogues of two-one formulas for multiple zeta star values. More... »
PAGES275-291
http://scigraph.springernature.com/pub.10.1007/s00605-014-0715-2
DOIhttp://dx.doi.org/10.1007/s00605-014-0715-2
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1043892630
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/2103",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Historical Studies",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/21",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "History and Archaeology",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Fields Institute for Research in Mathematical Sciences",
"id": "https://www.grid.ac/institutes/grid.249304.8",
"name": [
"The Fields Institute for Research in Mathematical Sciences, 222 College St, M5T 3J1, Toronto, ON, Canada"
],
"type": "Organization"
},
"familyName": "Hessami Pilehrood",
"givenName": "Khodabakhsh",
"id": "sg:person.011032324443.25",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011032324443.25"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Fields Institute for Research in Mathematical Sciences",
"id": "https://www.grid.ac/institutes/grid.249304.8",
"name": [
"The Fields Institute for Research in Mathematical Sciences, 222 College St, M5T 3J1, Toronto, ON, Canada"
],
"type": "Organization"
},
"familyName": "Hessami Pilehrood",
"givenName": "Tatiana",
"id": "sg:person.014715141533.92",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014715141533.92"
],
"type": "Person"
}
],
"citation": [
{
"id": "https://doi.org/10.1016/j.jnt.2006.11.011",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1006395939"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.jmaa.2013.09.017",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1013120258"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.2206/kyushujm.57.175",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1015417233"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.jalgebra.2004.09.017",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1017195364"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/0-387-24981-8_4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1020231594",
"https://doi.org/10.1007/0-387-24981-8_4"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/0-387-24981-8_4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1020231594",
"https://doi.org/10.1007/0-387-24981-8_4"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11139-007-9053-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1024234111",
"https://doi.org/10.1007/s11139-007-9053-5"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00029-001-8095-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1026723782",
"https://doi.org/10.1007/s00029-001-8095-6"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00029-001-8095-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1026723782",
"https://doi.org/10.1007/s00029-001-8095-6"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.disc.2005.06.008",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1032543320"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11139-007-9025-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1034541250",
"https://doi.org/10.1007/s11139-007-9025-9"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11139-015-9707-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1034690322",
"https://doi.org/10.1007/s11139-015-9707-7"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10688-014-0054-z",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1038673868",
"https://doi.org/10.1007/s10688-014-0054-z"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.jnt.2011.08.001",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1038950404"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1090/s0002-9939-07-08994-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1042094365"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1112/s0010437x0500182x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1043176857"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-0348-9112-7_23",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1043292839",
"https://doi.org/10.1007/978-3-0348-9112-7_23"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1070/rm2002v057n03abeh000512",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1058197518"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1070/rm2003v058n01abeh000592",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1058197595"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1090/s0002-9947-2013-05980-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1059336023"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1142/s1793042106000383",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1063019329"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1142/s1793042110003332",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1063019624"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1216/rmjm/1194275927",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1064431596"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.2140/pjm.1992.152.275",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1069069822"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.2969/jmsj/06841669",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1070932534"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.4064/aa123-3-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1072178172"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.4213/rm592",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1072370302"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.4310/cntp.2008.v2.n2.a2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1072459447"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.5802/jtnb.298",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1073141373"
],
"type": "CreativeWork"
}
],
"datePublished": "2015-02",
"datePublishedReg": "2015-02-01",
"description": "Recently, the present authors jointly with Tauraso found a family of binomial identities for multiple harmonic sums (MHS) on strings ({2}a,c,{2}b) that appeared to be useful for proving new congruences for MHS as well as new relations for multiple zeta values. Very recently, Zhao generalized this set of MHS identities to strings with repetitions of the above patterns and, as an application, proved the two-one formula for multiple zeta star values conjectured by Ohno and Zudilin. In this paper, we extend our approach to q-binomial identities and prove q-analogues of two-one formulas for multiple zeta star values.",
"genre": "research_article",
"id": "sg:pub.10.1007/s00605-014-0715-2",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1049395",
"issn": [
"0026-9255",
"1436-5081"
],
"name": "Monatshefte f\u00fcr Mathematik",
"type": "Periodical"
},
{
"issueNumber": "2",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "176"
}
],
"name": "On q-analogues of two-one formulas for multiple harmonic sums and multiple zeta star values",
"pagination": "275-291",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"d113e884f72c0a3658002e1aee0543b1e82ed8a0afead3f1c2502169cad1a95c"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s00605-014-0715-2"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1043892630"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s00605-014-0715-2",
"https://app.dimensions.ai/details/publication/pub.1043892630"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-10T18:15",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000490.jsonl",
"type": "ScholarlyArticle",
"url": "http://link.springer.com/10.1007/s00605-014-0715-2"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00605-014-0715-2'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00605-014-0715-2'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00605-014-0715-2'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00605-014-0715-2'
This table displays all metadata directly associated to this object as RDF triples.
156 TRIPLES
21 PREDICATES
54 URIs
19 LITERALS
7 BLANK NODES