On certain infinite extensions of the rationals with Northcott property View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-03

AUTHORS

Martin Widmer

ABSTRACT

A set of algebraic numbers has the Northcott property if each of its subsets of bounded Weil height is finite. Northcott’s Theorem, which has many Diophantine applications, states that sets of bounded degree have the Northcott property. Bombieri, Dvornicich and Zannier raised the problem of finding fields of infinite degree with this property. Bombieri and Zannier have shown that , the maximal abelian subfield of the field generated by all algebraic numbers of degree at most d, is such a field. In this note we give a simple criterion for the Northcott property and, as an application, we deduce several new examples, e.g. has the Northcott property if and only if , . . . tends to infinity. More... »

PAGES

341-353

References to SciGraph publications

  • 1977. Number Fields in NONE
  • 1999. Algebraic Number Theory in NONE
  • 1998. The Theory of Algebraic Number Fields in NONE
  • 2001-03. SUSY long-lived massive particles: Detection and physics at the LHC in RENDICONTI LINCEI. SCIENZE FISICHE E NATURALI
  • 1994. Algebraic Number Theory in NONE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00605-009-0162-7

    DOI

    http://dx.doi.org/10.1007/s00605-009-0162-7

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1041865150


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Graz University of Technology", 
              "id": "https://www.grid.ac/institutes/grid.410413.3", 
              "name": [
                "Department of Mathematics, University of Texas at Austin, 1 University Station C1200, 78712, Austin, TX, USA", 
                "Institut f\u00fcr Mathematik A, Technische Universit\u00e4t Graz, Steyrergasse 30/II, 8010, Graz, Austria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Widmer", 
            "givenName": "Martin", 
            "id": "sg:person.014273644615.47", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014273644615.47"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02904518", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008168286", 
              "https://doi.org/10.1007/bf02904518"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02904518", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008168286", 
              "https://doi.org/10.1007/bf02904518"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-03983-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014253491", 
              "https://doi.org/10.1007/978-3-662-03983-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-03983-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014253491", 
              "https://doi.org/10.1007/978-3-662-03983-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4684-9356-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020367698", 
              "https://doi.org/10.1007/978-1-4684-9356-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4684-9356-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020367698", 
              "https://doi.org/10.1007/978-1-4684-9356-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4612-0853-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031975738", 
              "https://doi.org/10.1007/978-1-4612-0853-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4612-0853-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031975738", 
              "https://doi.org/10.1007/978-1-4612-0853-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-03545-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034493644", 
              "https://doi.org/10.1007/978-3-662-03545-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-03545-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034493644", 
              "https://doi.org/10.1007/978-3-662-03545-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-314x(87)90029-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046783288"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0305004100025202", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053842566"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1215/s0012-7094-07-13934-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064415701"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1215/s0012-7094-84-05118-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064419210"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/1969504", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069674882"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.7169/facm/1229696562", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1073637826"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.24033/msmf.48", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083663015"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4064/aa-7-3-241-249", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091701239"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/cbo9781139172165", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098687924"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2011-03", 
        "datePublishedReg": "2011-03-01", 
        "description": "A set of algebraic numbers has the Northcott property if each of its subsets of bounded Weil height is finite. Northcott\u2019s Theorem, which has many Diophantine applications, states that sets of bounded degree have the Northcott property. Bombieri, Dvornicich and Zannier raised the problem of finding fields of infinite degree with this property. Bombieri and Zannier have shown that , the maximal abelian subfield of the field generated by all algebraic numbers of degree at most d, is such a field. In this note we give a simple criterion for the Northcott property and, as an application, we deduce several new examples, e.g. has the Northcott property if and only if , . . . tends to infinity.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00605-009-0162-7", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1049395", 
            "issn": [
              "0026-9255", 
              "1436-5081"
            ], 
            "name": "Monatshefte f\u00fcr Mathematik", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "162"
          }
        ], 
        "name": "On certain infinite extensions of the rationals with Northcott property", 
        "pagination": "341-353", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "c76ce85b607eede6c29e99516336399d0010d1ac32dbcd97b80eaf47468d6d5b"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00605-009-0162-7"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1041865150"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00605-009-0162-7", 
          "https://app.dimensions.ai/details/publication/pub.1041865150"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T22:24", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000482.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/s00605-009-0162-7"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00605-009-0162-7'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00605-009-0162-7'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00605-009-0162-7'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00605-009-0162-7'


     

    This table displays all metadata directly associated to this object as RDF triples.

    109 TRIPLES      21 PREDICATES      41 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00605-009-0162-7 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Nddc59bde310149c58b869a794045dbec
    4 schema:citation sg:pub.10.1007/978-1-4612-0853-2
    5 sg:pub.10.1007/978-1-4684-9356-6
    6 sg:pub.10.1007/978-3-662-03545-0
    7 sg:pub.10.1007/978-3-662-03983-0
    8 sg:pub.10.1007/bf02904518
    9 https://doi.org/10.1016/0022-314x(87)90029-1
    10 https://doi.org/10.1017/cbo9781139172165
    11 https://doi.org/10.1017/s0305004100025202
    12 https://doi.org/10.1215/s0012-7094-07-13934-6
    13 https://doi.org/10.1215/s0012-7094-84-05118-4
    14 https://doi.org/10.2307/1969504
    15 https://doi.org/10.24033/msmf.48
    16 https://doi.org/10.4064/aa-7-3-241-249
    17 https://doi.org/10.7169/facm/1229696562
    18 schema:datePublished 2011-03
    19 schema:datePublishedReg 2011-03-01
    20 schema:description A set of algebraic numbers has the Northcott property if each of its subsets of bounded Weil height is finite. Northcott’s Theorem, which has many Diophantine applications, states that sets of bounded degree have the Northcott property. Bombieri, Dvornicich and Zannier raised the problem of finding fields of infinite degree with this property. Bombieri and Zannier have shown that , the maximal abelian subfield of the field generated by all algebraic numbers of degree at most d, is such a field. In this note we give a simple criterion for the Northcott property and, as an application, we deduce several new examples, e.g. has the Northcott property if and only if , . . . tends to infinity.
    21 schema:genre research_article
    22 schema:inLanguage en
    23 schema:isAccessibleForFree false
    24 schema:isPartOf N72ba98b63aa94d6d841fa40313679b31
    25 N8759252e168f4f0e9c6445be162c84b1
    26 sg:journal.1049395
    27 schema:name On certain infinite extensions of the rationals with Northcott property
    28 schema:pagination 341-353
    29 schema:productId N4e66f9ae99814bccbcd372d7badc367a
    30 Nce1dd29738474922912f601386046ccd
    31 Ncf4fca7d2c9a456d8ae9143741c81ca5
    32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041865150
    33 https://doi.org/10.1007/s00605-009-0162-7
    34 schema:sdDatePublished 2019-04-10T22:24
    35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    36 schema:sdPublisher N27d01dafff2042d3aa430774329b9ebd
    37 schema:url http://link.springer.com/10.1007/s00605-009-0162-7
    38 sgo:license sg:explorer/license/
    39 sgo:sdDataset articles
    40 rdf:type schema:ScholarlyArticle
    41 N27d01dafff2042d3aa430774329b9ebd schema:name Springer Nature - SN SciGraph project
    42 rdf:type schema:Organization
    43 N4e66f9ae99814bccbcd372d7badc367a schema:name dimensions_id
    44 schema:value pub.1041865150
    45 rdf:type schema:PropertyValue
    46 N72ba98b63aa94d6d841fa40313679b31 schema:issueNumber 3
    47 rdf:type schema:PublicationIssue
    48 N8759252e168f4f0e9c6445be162c84b1 schema:volumeNumber 162
    49 rdf:type schema:PublicationVolume
    50 Nce1dd29738474922912f601386046ccd schema:name doi
    51 schema:value 10.1007/s00605-009-0162-7
    52 rdf:type schema:PropertyValue
    53 Ncf4fca7d2c9a456d8ae9143741c81ca5 schema:name readcube_id
    54 schema:value c76ce85b607eede6c29e99516336399d0010d1ac32dbcd97b80eaf47468d6d5b
    55 rdf:type schema:PropertyValue
    56 Nddc59bde310149c58b869a794045dbec rdf:first sg:person.014273644615.47
    57 rdf:rest rdf:nil
    58 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    59 schema:name Mathematical Sciences
    60 rdf:type schema:DefinedTerm
    61 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    62 schema:name Pure Mathematics
    63 rdf:type schema:DefinedTerm
    64 sg:journal.1049395 schema:issn 0026-9255
    65 1436-5081
    66 schema:name Monatshefte für Mathematik
    67 rdf:type schema:Periodical
    68 sg:person.014273644615.47 schema:affiliation https://www.grid.ac/institutes/grid.410413.3
    69 schema:familyName Widmer
    70 schema:givenName Martin
    71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014273644615.47
    72 rdf:type schema:Person
    73 sg:pub.10.1007/978-1-4612-0853-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031975738
    74 https://doi.org/10.1007/978-1-4612-0853-2
    75 rdf:type schema:CreativeWork
    76 sg:pub.10.1007/978-1-4684-9356-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020367698
    77 https://doi.org/10.1007/978-1-4684-9356-6
    78 rdf:type schema:CreativeWork
    79 sg:pub.10.1007/978-3-662-03545-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034493644
    80 https://doi.org/10.1007/978-3-662-03545-0
    81 rdf:type schema:CreativeWork
    82 sg:pub.10.1007/978-3-662-03983-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014253491
    83 https://doi.org/10.1007/978-3-662-03983-0
    84 rdf:type schema:CreativeWork
    85 sg:pub.10.1007/bf02904518 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008168286
    86 https://doi.org/10.1007/bf02904518
    87 rdf:type schema:CreativeWork
    88 https://doi.org/10.1016/0022-314x(87)90029-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046783288
    89 rdf:type schema:CreativeWork
    90 https://doi.org/10.1017/cbo9781139172165 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098687924
    91 rdf:type schema:CreativeWork
    92 https://doi.org/10.1017/s0305004100025202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053842566
    93 rdf:type schema:CreativeWork
    94 https://doi.org/10.1215/s0012-7094-07-13934-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064415701
    95 rdf:type schema:CreativeWork
    96 https://doi.org/10.1215/s0012-7094-84-05118-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064419210
    97 rdf:type schema:CreativeWork
    98 https://doi.org/10.2307/1969504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069674882
    99 rdf:type schema:CreativeWork
    100 https://doi.org/10.24033/msmf.48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083663015
    101 rdf:type schema:CreativeWork
    102 https://doi.org/10.4064/aa-7-3-241-249 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091701239
    103 rdf:type schema:CreativeWork
    104 https://doi.org/10.7169/facm/1229696562 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073637826
    105 rdf:type schema:CreativeWork
    106 https://www.grid.ac/institutes/grid.410413.3 schema:alternateName Graz University of Technology
    107 schema:name Department of Mathematics, University of Texas at Austin, 1 University Station C1200, 78712, Austin, TX, USA
    108 Institut für Mathematik A, Technische Universität Graz, Steyrergasse 30/II, 8010, Graz, Austria
    109 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...