Boundary of central tiles associated with Pisot beta-numeration and purely periodic expansions View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2008-08-02

AUTHORS

Shigeki Akiyama, Guy Barat, Valérie Berthé, Anne Siegel

ABSTRACT

This paper studies tilings and representation sapces related to the β-transformation when β is a Pisot number (that is not supposed to be a unit). The obtained results are applied to study the set of rational numbers having a purely periodic β-expansion. We indeed make use of the connection between pure periodicity and a compact self-similar representation of numbers having no fractional part in their β-expansion, called central tile: for elements x of the ring \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}[1/\beta]}$$\end{document} , so-called x-tiles are introduced, so that the central tile is a finite union of x-tiles up to translation. These x-tiles provide a covering (and even in some cases a tiling) of the space we are working in. This space, called complete representation space, is based on Archimedean as well as on the non-Archimedean completions of the number field \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb Q} (\beta)}$$\end{document} corresponding to the prime divisors of the norm of β. This representation space has numerous potential implications. We focus here on the gamma function γ(β) defined as the supremum of the set of elements v in [0, 1] such that every positive rational number p/q, with p/q ≤ v and q coprime with the norm of β, has a purely periodic β-expansion. The key point relies on the description of the boundary of the tiles in terms of paths on a graph called “boundary graph”. The paper ends with explicit quadratic examples, showing that the general behaviour of γ(β) is slightly more complicated than in the unit case. More... »

PAGES

377-419

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00605-008-0009-7

DOI

http://dx.doi.org/10.1007/s00605-008-0009-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1045553309


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, Faculty of Science, Niigata University, Ikarashi-2, 8050, 950-2181, Niigata, Japan", 
          "id": "http://www.grid.ac/institutes/grid.260975.f", 
          "name": [
            "Department of Mathematics, Faculty of Science, Niigata University, Ikarashi-2, 8050, 950-2181, Niigata, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Akiyama", 
        "givenName": "Shigeki", 
        "id": "sg:person.011153327405.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011153327405.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut f\u00fcr Mathematik A, T.U. Graz, Steyrergasse 30, 8010, Graz, Austria", 
          "id": "http://www.grid.ac/institutes/grid.410413.3", 
          "name": [
            "Institut f\u00fcr Mathematik A, T.U. Graz, Steyrergasse 30, 8010, Graz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Barat", 
        "givenName": "Guy", 
        "id": "sg:person.010172216341.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010172216341.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "LIRMM, CNRS UMR 5506, 161 rue Ada, 34392, Montpellier Cedex 5, France", 
          "id": "http://www.grid.ac/institutes/grid.464638.b", 
          "name": [
            "LIRMM, CNRS UMR 5506, 161 rue Ada, 34392, Montpellier Cedex 5, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Berth\u00e9", 
        "givenName": "Val\u00e9rie", 
        "id": "sg:person.011072624737.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011072624737.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "IRISA, Campus de Beaulieu, 35042, Rennes Cedex, France", 
          "id": "http://www.grid.ac/institutes/grid.420225.3", 
          "name": [
            "IRISA, Campus de Beaulieu, 35042, Rennes Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Siegel", 
        "givenName": "Anne", 
        "id": "sg:person.01016500774.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01016500774.15"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s006050050005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028533495", 
          "https://doi.org/10.1007/s006050050005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00058946", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027633602", 
          "https://doi.org/10.1007/bf00058946"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02772542", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002725596", 
          "https://doi.org/10.1007/bf02772542"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02020954", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018173239", 
          "https://doi.org/10.1007/bf02020954"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-015-7931-5_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005460623", 
          "https://doi.org/10.1007/978-94-015-7931-5_1"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-08-02", 
    "datePublishedReg": "2008-08-02", 
    "description": "This paper studies tilings and representation sapces related to the \u03b2-transformation when \u03b2 is a Pisot number (that is not supposed to be a unit). The obtained results are applied to study the set of rational numbers having a purely periodic \u03b2-expansion. We indeed make use of the connection between pure periodicity and a compact self-similar representation of numbers having no fractional part in their \u03b2-expansion, called central tile: for elements x of the ring \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\mathbb {Z}[1/\\beta]}$$\\end{document} , so-called x-tiles are introduced, so that the central tile is a finite union of x-tiles up to translation. These x-tiles provide a covering (and even in some cases a tiling) of the space we are working in. This space, called complete representation space, is based on Archimedean as well as on the non-Archimedean completions of the number field \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${{\\mathbb Q} (\\beta)}$$\\end{document} corresponding to the prime divisors of the norm of \u03b2. This representation space has numerous potential implications. We focus here on the gamma function \u03b3(\u03b2) defined as the supremum of the set of elements v in [0, 1] such that every positive rational number p/q, with p/q \u00a0\u2264\u00a0 v and q coprime with the norm of \u03b2, has a purely periodic \u03b2-expansion. The key point relies on the description of the boundary of the tiles in terms of paths on a graph called \u201cboundary graph\u201d. The paper ends with explicit quadratic examples, showing that the general behaviour of \u03b3(\u03b2) is slightly more complicated than in the unit case.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00605-008-0009-7", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1049395", 
        "issn": [
          "0026-9255", 
          "1436-5081"
        ], 
        "name": "Monatshefte f\u00fcr Mathematik", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3-4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "155"
      }
    ], 
    "keywords": [
      "rational numbers", 
      "self-similar representation", 
      "finite union", 
      "representation space", 
      "number field", 
      "gamma function", 
      "rational number p/q", 
      "terms of paths", 
      "boundary graph", 
      "tiling", 
      "Pisot number", 
      "number", 
      "set", 
      "expansion", 
      "pure periodicity", 
      "periodicity", 
      "representation", 
      "fractional part", 
      "central tiles", 
      "element x", 
      "covering", 
      "space", 
      "Archimedean", 
      "field", 
      "prime divisors", 
      "divisors", 
      "norms", 
      "function", 
      "supremum", 
      "elements V", 
      "coprime", 
      "key points", 
      "point", 
      "description", 
      "boundaries", 
      "terms", 
      "path", 
      "graph", 
      "general behavior", 
      "Pisot", 
      "periodic expansion", 
      "paper", 
      "transformation", 
      "results", 
      "use", 
      "connection", 
      "part", 
      "tiles", 
      "ring", 
      "Union", 
      "translation", 
      "completion", 
      "potential implications", 
      "implications", 
      "example", 
      "behavior", 
      "unit cases", 
      "cases"
    ], 
    "name": "Boundary of central tiles associated with Pisot beta-numeration and purely periodic expansions", 
    "pagination": "377-419", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1045553309"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00605-008-0009-7"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00605-008-0009-7", 
      "https://app.dimensions.ai/details/publication/pub.1045553309"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-10T09:57", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_472.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00605-008-0009-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00605-008-0009-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00605-008-0009-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00605-008-0009-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00605-008-0009-7'


 

This table displays all metadata directly associated to this object as RDF triples.

166 TRIPLES      22 PREDICATES      88 URIs      75 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00605-008-0009-7 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N4702546d13914b9b90816e04a44f175f
4 schema:citation sg:pub.10.1007/978-94-015-7931-5_1
5 sg:pub.10.1007/bf00058946
6 sg:pub.10.1007/bf02020954
7 sg:pub.10.1007/bf02772542
8 sg:pub.10.1007/s006050050005
9 schema:datePublished 2008-08-02
10 schema:datePublishedReg 2008-08-02
11 schema:description This paper studies tilings and representation sapces related to the β-transformation when β is a Pisot number (that is not supposed to be a unit). The obtained results are applied to study the set of rational numbers having a purely periodic β-expansion. We indeed make use of the connection between pure periodicity and a compact self-similar representation of numbers having no fractional part in their β-expansion, called central tile: for elements x of the ring \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}[1/\beta]}$$\end{document} , so-called x-tiles are introduced, so that the central tile is a finite union of x-tiles up to translation. These x-tiles provide a covering (and even in some cases a tiling) of the space we are working in. This space, called complete representation space, is based on Archimedean as well as on the non-Archimedean completions of the number field \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb Q} (\beta)}$$\end{document} corresponding to the prime divisors of the norm of β. This representation space has numerous potential implications. We focus here on the gamma function γ(β) defined as the supremum of the set of elements v in [0, 1] such that every positive rational number p/q, with p/q  ≤  v and q coprime with the norm of β, has a purely periodic β-expansion. The key point relies on the description of the boundary of the tiles in terms of paths on a graph called “boundary graph”. The paper ends with explicit quadratic examples, showing that the general behaviour of γ(β) is slightly more complicated than in the unit case.
12 schema:genre article
13 schema:inLanguage en
14 schema:isAccessibleForFree true
15 schema:isPartOf N206195d454ce44458a851edb0b16c219
16 Nbd30ee5e92f342ccac27f185e11533aa
17 sg:journal.1049395
18 schema:keywords Archimedean
19 Pisot
20 Pisot number
21 Union
22 behavior
23 boundaries
24 boundary graph
25 cases
26 central tiles
27 completion
28 connection
29 coprime
30 covering
31 description
32 divisors
33 element x
34 elements V
35 example
36 expansion
37 field
38 finite union
39 fractional part
40 function
41 gamma function
42 general behavior
43 graph
44 implications
45 key points
46 norms
47 number
48 number field
49 paper
50 part
51 path
52 periodic expansion
53 periodicity
54 point
55 potential implications
56 prime divisors
57 pure periodicity
58 rational number p/q
59 rational numbers
60 representation
61 representation space
62 results
63 ring
64 self-similar representation
65 set
66 space
67 supremum
68 terms
69 terms of paths
70 tiles
71 tiling
72 transformation
73 translation
74 unit cases
75 use
76 schema:name Boundary of central tiles associated with Pisot beta-numeration and purely periodic expansions
77 schema:pagination 377-419
78 schema:productId N217deab6ee214b2493e6cdaa440282de
79 Nefab373e414347ff96a760310de6a475
80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045553309
81 https://doi.org/10.1007/s00605-008-0009-7
82 schema:sdDatePublished 2022-05-10T09:57
83 schema:sdLicense https://scigraph.springernature.com/explorer/license/
84 schema:sdPublisher N22602c182b5d4b9daba7e6f74c5c3b38
85 schema:url https://doi.org/10.1007/s00605-008-0009-7
86 sgo:license sg:explorer/license/
87 sgo:sdDataset articles
88 rdf:type schema:ScholarlyArticle
89 N04d36cda17f841f380ea26a1beab5585 rdf:first sg:person.01016500774.15
90 rdf:rest rdf:nil
91 N206195d454ce44458a851edb0b16c219 schema:volumeNumber 155
92 rdf:type schema:PublicationVolume
93 N217deab6ee214b2493e6cdaa440282de schema:name doi
94 schema:value 10.1007/s00605-008-0009-7
95 rdf:type schema:PropertyValue
96 N22602c182b5d4b9daba7e6f74c5c3b38 schema:name Springer Nature - SN SciGraph project
97 rdf:type schema:Organization
98 N4702546d13914b9b90816e04a44f175f rdf:first sg:person.011153327405.03
99 rdf:rest Na989e5c56d1b490e84a2cc2c00ebef01
100 N53a443b439784998a1c4a19e915867ff rdf:first sg:person.011072624737.54
101 rdf:rest N04d36cda17f841f380ea26a1beab5585
102 Na989e5c56d1b490e84a2cc2c00ebef01 rdf:first sg:person.010172216341.42
103 rdf:rest N53a443b439784998a1c4a19e915867ff
104 Nbd30ee5e92f342ccac27f185e11533aa schema:issueNumber 3-4
105 rdf:type schema:PublicationIssue
106 Nefab373e414347ff96a760310de6a475 schema:name dimensions_id
107 schema:value pub.1045553309
108 rdf:type schema:PropertyValue
109 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
110 schema:name Mathematical Sciences
111 rdf:type schema:DefinedTerm
112 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
113 schema:name Pure Mathematics
114 rdf:type schema:DefinedTerm
115 sg:journal.1049395 schema:issn 0026-9255
116 1436-5081
117 schema:name Monatshefte für Mathematik
118 schema:publisher Springer Nature
119 rdf:type schema:Periodical
120 sg:person.01016500774.15 schema:affiliation grid-institutes:grid.420225.3
121 schema:familyName Siegel
122 schema:givenName Anne
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01016500774.15
124 rdf:type schema:Person
125 sg:person.010172216341.42 schema:affiliation grid-institutes:grid.410413.3
126 schema:familyName Barat
127 schema:givenName Guy
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010172216341.42
129 rdf:type schema:Person
130 sg:person.011072624737.54 schema:affiliation grid-institutes:grid.464638.b
131 schema:familyName Berthé
132 schema:givenName Valérie
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011072624737.54
134 rdf:type schema:Person
135 sg:person.011153327405.03 schema:affiliation grid-institutes:grid.260975.f
136 schema:familyName Akiyama
137 schema:givenName Shigeki
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011153327405.03
139 rdf:type schema:Person
140 sg:pub.10.1007/978-94-015-7931-5_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005460623
141 https://doi.org/10.1007/978-94-015-7931-5_1
142 rdf:type schema:CreativeWork
143 sg:pub.10.1007/bf00058946 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027633602
144 https://doi.org/10.1007/bf00058946
145 rdf:type schema:CreativeWork
146 sg:pub.10.1007/bf02020954 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018173239
147 https://doi.org/10.1007/bf02020954
148 rdf:type schema:CreativeWork
149 sg:pub.10.1007/bf02772542 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002725596
150 https://doi.org/10.1007/bf02772542
151 rdf:type schema:CreativeWork
152 sg:pub.10.1007/s006050050005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028533495
153 https://doi.org/10.1007/s006050050005
154 rdf:type schema:CreativeWork
155 grid-institutes:grid.260975.f schema:alternateName Department of Mathematics, Faculty of Science, Niigata University, Ikarashi-2, 8050, 950-2181, Niigata, Japan
156 schema:name Department of Mathematics, Faculty of Science, Niigata University, Ikarashi-2, 8050, 950-2181, Niigata, Japan
157 rdf:type schema:Organization
158 grid-institutes:grid.410413.3 schema:alternateName Institut für Mathematik A, T.U. Graz, Steyrergasse 30, 8010, Graz, Austria
159 schema:name Institut für Mathematik A, T.U. Graz, Steyrergasse 30, 8010, Graz, Austria
160 rdf:type schema:Organization
161 grid-institutes:grid.420225.3 schema:alternateName IRISA, Campus de Beaulieu, 35042, Rennes Cedex, France
162 schema:name IRISA, Campus de Beaulieu, 35042, Rennes Cedex, France
163 rdf:type schema:Organization
164 grid-institutes:grid.464638.b schema:alternateName LIRMM, CNRS UMR 5506, 161 rue Ada, 34392, Montpellier Cedex 5, France
165 schema:name LIRMM, CNRS UMR 5506, 161 rue Ada, 34392, Montpellier Cedex 5, France
166 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...