Intervals of 1-Lipschitz aggregation operators, quasi-copulas, and copulas with given affine section View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2007-09-25

AUTHORS

Erich Peter Klement, Anna Kolesárová

ABSTRACT

.Best lower and upper bounds for 1-Lipschitz aggregation operators with a given affine section are given. These are used to determine best bounds for quasi-copulas and copulas with a given affine section. However, in general there is no greatest copula with a given non-decreasing affine section. These results are used to study (quasi-)copulas with arbitrary affine sections. More... »

PAGES

151-167

References to SciGraph publications

  • 2000. Triangular Norms in NONE
  • 1999. An Introduction to Copulas in NONE
  • 2002. The Bertino Family of Copulas in DISTRIBUTIONS WITH GIVEN MARGINALS AND STATISTICAL MODELLING
  • 1997. Copulas Constructed from Diagonal Sections in DISTRIBUTIONS WITH GIVEN MARGINALS AND MOMENT PROBLEMS
  • 1993-04. On the determination of strictt-norms on some diagonal segments in AEQUATIONES MATHEMATICAE
  • 2002. Aggregation Operators: Properties, Classes and Construction Methods in AGGREGATION OPERATORS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00605-007-0460-x

    DOI

    http://dx.doi.org/10.1007/s00605-007-0460-x

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1012415448


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Johannes Kepler University, Linz, Austria", 
              "id": "http://www.grid.ac/institutes/grid.9970.7", 
              "name": [
                "Johannes Kepler University, Linz, Austria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Klement", 
            "givenName": "Erich Peter", 
            "id": "sg:person.010620407107.52", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010620407107.52"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Slovak University of Technology, Bratislava, Slovakia", 
              "id": "http://www.grid.ac/institutes/grid.440789.6", 
              "name": [
                "Slovak University of Technology, Bratislava, Slovakia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Koles\u00e1rov\u00e1", 
            "givenName": "Anna", 
            "id": "sg:person.013323425473.28", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013323425473.28"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01855882", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000780481", 
              "https://doi.org/10.1007/bf01855882"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-015-9540-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025931387", 
              "https://doi.org/10.1007/978-94-015-9540-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-011-5532-8_16", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017813050", 
              "https://doi.org/10.1007/978-94-011-5532-8_16"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-017-0061-0_10", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044820219", 
              "https://doi.org/10.1007/978-94-017-0061-0_10"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-7908-1787-4_1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011113308", 
              "https://doi.org/10.1007/978-3-7908-1787-4_1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4757-3076-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007031563", 
              "https://doi.org/10.1007/978-1-4757-3076-0"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2007-09-25", 
        "datePublishedReg": "2007-09-25", 
        "description": "Abstract.Best lower and upper bounds for 1-Lipschitz aggregation operators with a given affine section are given. These are used to determine best bounds for quasi-copulas and copulas with a given affine section. However, in general there is no greatest copula with a given non-decreasing affine section. These results are used to study (quasi-)copulas with arbitrary affine sections.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00605-007-0460-x", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1049395", 
            "issn": [
              "0026-9255", 
              "1436-5081"
            ], 
            "name": "Monatshefte f\u00fcr Mathematik", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "152"
          }
        ], 
        "keywords": [
          "affine section", 
          "aggregation operators", 
          "better bounds", 
          "upper bounds", 
          "bounds", 
          "copula", 
          "quasi-copulas", 
          "operators", 
          "quasi", 
          "sections", 
          "results", 
          "intervals"
        ], 
        "name": "Intervals of 1-Lipschitz aggregation operators, quasi-copulas, and copulas with given affine section", 
        "pagination": "151-167", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1012415448"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00605-007-0460-x"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00605-007-0460-x", 
          "https://app.dimensions.ai/details/publication/pub.1012415448"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-20T07:24", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_433.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00605-007-0460-x"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00605-007-0460-x'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00605-007-0460-x'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00605-007-0460-x'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00605-007-0460-x'


     

    This table displays all metadata directly associated to this object as RDF triples.

    104 TRIPLES      22 PREDICATES      43 URIs      29 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00605-007-0460-x schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N41c11ed7c9d447aba4c4edd4c7852e5e
    4 schema:citation sg:pub.10.1007/978-1-4757-3076-0
    5 sg:pub.10.1007/978-3-7908-1787-4_1
    6 sg:pub.10.1007/978-94-011-5532-8_16
    7 sg:pub.10.1007/978-94-015-9540-7
    8 sg:pub.10.1007/978-94-017-0061-0_10
    9 sg:pub.10.1007/bf01855882
    10 schema:datePublished 2007-09-25
    11 schema:datePublishedReg 2007-09-25
    12 schema:description Abstract.Best lower and upper bounds for 1-Lipschitz aggregation operators with a given affine section are given. These are used to determine best bounds for quasi-copulas and copulas with a given affine section. However, in general there is no greatest copula with a given non-decreasing affine section. These results are used to study (quasi-)copulas with arbitrary affine sections.
    13 schema:genre article
    14 schema:inLanguage en
    15 schema:isAccessibleForFree false
    16 schema:isPartOf N83c43df3052a426b9f28e44bad701b7c
    17 Na0a0079964404a9cb27353df89165085
    18 sg:journal.1049395
    19 schema:keywords affine section
    20 aggregation operators
    21 better bounds
    22 bounds
    23 copula
    24 intervals
    25 operators
    26 quasi
    27 quasi-copulas
    28 results
    29 sections
    30 upper bounds
    31 schema:name Intervals of 1-Lipschitz aggregation operators, quasi-copulas, and copulas with given affine section
    32 schema:pagination 151-167
    33 schema:productId N43911a4ca7e54554a4ad8cfca82c1405
    34 N5fd94978f2cb4716a70c484e0807a159
    35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012415448
    36 https://doi.org/10.1007/s00605-007-0460-x
    37 schema:sdDatePublished 2022-05-20T07:24
    38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    39 schema:sdPublisher N0c03d0b977834e33bc322d34263b6f60
    40 schema:url https://doi.org/10.1007/s00605-007-0460-x
    41 sgo:license sg:explorer/license/
    42 sgo:sdDataset articles
    43 rdf:type schema:ScholarlyArticle
    44 N0c03d0b977834e33bc322d34263b6f60 schema:name Springer Nature - SN SciGraph project
    45 rdf:type schema:Organization
    46 N222cf75c60cc470b9f9ce03b37073ae5 rdf:first sg:person.013323425473.28
    47 rdf:rest rdf:nil
    48 N41c11ed7c9d447aba4c4edd4c7852e5e rdf:first sg:person.010620407107.52
    49 rdf:rest N222cf75c60cc470b9f9ce03b37073ae5
    50 N43911a4ca7e54554a4ad8cfca82c1405 schema:name doi
    51 schema:value 10.1007/s00605-007-0460-x
    52 rdf:type schema:PropertyValue
    53 N5fd94978f2cb4716a70c484e0807a159 schema:name dimensions_id
    54 schema:value pub.1012415448
    55 rdf:type schema:PropertyValue
    56 N83c43df3052a426b9f28e44bad701b7c schema:issueNumber 2
    57 rdf:type schema:PublicationIssue
    58 Na0a0079964404a9cb27353df89165085 schema:volumeNumber 152
    59 rdf:type schema:PublicationVolume
    60 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    61 schema:name Mathematical Sciences
    62 rdf:type schema:DefinedTerm
    63 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    64 schema:name Pure Mathematics
    65 rdf:type schema:DefinedTerm
    66 sg:journal.1049395 schema:issn 0026-9255
    67 1436-5081
    68 schema:name Monatshefte für Mathematik
    69 schema:publisher Springer Nature
    70 rdf:type schema:Periodical
    71 sg:person.010620407107.52 schema:affiliation grid-institutes:grid.9970.7
    72 schema:familyName Klement
    73 schema:givenName Erich Peter
    74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010620407107.52
    75 rdf:type schema:Person
    76 sg:person.013323425473.28 schema:affiliation grid-institutes:grid.440789.6
    77 schema:familyName Kolesárová
    78 schema:givenName Anna
    79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013323425473.28
    80 rdf:type schema:Person
    81 sg:pub.10.1007/978-1-4757-3076-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007031563
    82 https://doi.org/10.1007/978-1-4757-3076-0
    83 rdf:type schema:CreativeWork
    84 sg:pub.10.1007/978-3-7908-1787-4_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011113308
    85 https://doi.org/10.1007/978-3-7908-1787-4_1
    86 rdf:type schema:CreativeWork
    87 sg:pub.10.1007/978-94-011-5532-8_16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017813050
    88 https://doi.org/10.1007/978-94-011-5532-8_16
    89 rdf:type schema:CreativeWork
    90 sg:pub.10.1007/978-94-015-9540-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025931387
    91 https://doi.org/10.1007/978-94-015-9540-7
    92 rdf:type schema:CreativeWork
    93 sg:pub.10.1007/978-94-017-0061-0_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044820219
    94 https://doi.org/10.1007/978-94-017-0061-0_10
    95 rdf:type schema:CreativeWork
    96 sg:pub.10.1007/bf01855882 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000780481
    97 https://doi.org/10.1007/bf01855882
    98 rdf:type schema:CreativeWork
    99 grid-institutes:grid.440789.6 schema:alternateName Slovak University of Technology, Bratislava, Slovakia
    100 schema:name Slovak University of Technology, Bratislava, Slovakia
    101 rdf:type schema:Organization
    102 grid-institutes:grid.9970.7 schema:alternateName Johannes Kepler University, Linz, Austria
    103 schema:name Johannes Kepler University, Linz, Austria
    104 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...