Intervals of 1-Lipschitz aggregation operators, quasi-copulas, and copulas with given affine section View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2007-09-25

AUTHORS

Erich Peter Klement, Anna Kolesárová

ABSTRACT

.Best lower and upper bounds for 1-Lipschitz aggregation operators with a given affine section are given. These are used to determine best bounds for quasi-copulas and copulas with a given affine section. However, in general there is no greatest copula with a given non-decreasing affine section. These results are used to study (quasi-)copulas with arbitrary affine sections. More... »

PAGES

151-167

References to SciGraph publications

  • 2000. Triangular Norms in NONE
  • 1999. An Introduction to Copulas in NONE
  • 2002. The Bertino Family of Copulas in DISTRIBUTIONS WITH GIVEN MARGINALS AND STATISTICAL MODELLING
  • 1997. Copulas Constructed from Diagonal Sections in DISTRIBUTIONS WITH GIVEN MARGINALS AND MOMENT PROBLEMS
  • 1993-04. On the determination of strictt-norms on some diagonal segments in AEQUATIONES MATHEMATICAE
  • 2002. Aggregation Operators: Properties, Classes and Construction Methods in AGGREGATION OPERATORS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00605-007-0460-x

    DOI

    http://dx.doi.org/10.1007/s00605-007-0460-x

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1012415448


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Johannes Kepler University, Linz, Austria", 
              "id": "http://www.grid.ac/institutes/grid.9970.7", 
              "name": [
                "Johannes Kepler University, Linz, Austria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Klement", 
            "givenName": "Erich Peter", 
            "id": "sg:person.010620407107.52", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010620407107.52"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Slovak University of Technology, Bratislava, Slovakia", 
              "id": "http://www.grid.ac/institutes/grid.440789.6", 
              "name": [
                "Slovak University of Technology, Bratislava, Slovakia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Koles\u00e1rov\u00e1", 
            "givenName": "Anna", 
            "id": "sg:person.013323425473.28", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013323425473.28"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-94-011-5532-8_16", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017813050", 
              "https://doi.org/10.1007/978-94-011-5532-8_16"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-7908-1787-4_1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011113308", 
              "https://doi.org/10.1007/978-3-7908-1787-4_1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4757-3076-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007031563", 
              "https://doi.org/10.1007/978-1-4757-3076-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-015-9540-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025931387", 
              "https://doi.org/10.1007/978-94-015-9540-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-017-0061-0_10", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044820219", 
              "https://doi.org/10.1007/978-94-017-0061-0_10"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01855882", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000780481", 
              "https://doi.org/10.1007/bf01855882"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2007-09-25", 
        "datePublishedReg": "2007-09-25", 
        "description": "Abstract.Best lower and upper bounds for 1-Lipschitz aggregation operators with a given affine section are given. These are used to determine best bounds for quasi-copulas and copulas with a given affine section. However, in general there is no greatest copula with a given non-decreasing affine section. These results are used to study (quasi-)copulas with arbitrary affine sections.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00605-007-0460-x", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1049395", 
            "issn": [
              "0026-9255", 
              "1436-5081"
            ], 
            "name": "Monatshefte f\u00fcr Mathematik", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "152"
          }
        ], 
        "keywords": [
          "affine section", 
          "aggregation operators", 
          "upper bounds", 
          "quasi-copulas", 
          "better bounds", 
          "copula", 
          "bounds", 
          "operators", 
          "intervals", 
          "results", 
          "sections", 
          "greatest copula", 
          "non-decreasing affine section", 
          "arbitrary affine sections"
        ], 
        "name": "Intervals of 1-Lipschitz aggregation operators, quasi-copulas, and copulas with given affine section", 
        "pagination": "151-167", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1012415448"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00605-007-0460-x"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00605-007-0460-x", 
          "https://app.dimensions.ai/details/publication/pub.1012415448"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:16", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_443.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00605-007-0460-x"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00605-007-0460-x'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00605-007-0460-x'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00605-007-0460-x'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00605-007-0460-x'


     

    This table displays all metadata directly associated to this object as RDF triples.

    106 TRIPLES      22 PREDICATES      45 URIs      31 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00605-007-0460-x schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N4f7b3c3a95474625b16745823037064e
    4 schema:citation sg:pub.10.1007/978-1-4757-3076-0
    5 sg:pub.10.1007/978-3-7908-1787-4_1
    6 sg:pub.10.1007/978-94-011-5532-8_16
    7 sg:pub.10.1007/978-94-015-9540-7
    8 sg:pub.10.1007/978-94-017-0061-0_10
    9 sg:pub.10.1007/bf01855882
    10 schema:datePublished 2007-09-25
    11 schema:datePublishedReg 2007-09-25
    12 schema:description Abstract.Best lower and upper bounds for 1-Lipschitz aggregation operators with a given affine section are given. These are used to determine best bounds for quasi-copulas and copulas with a given affine section. However, in general there is no greatest copula with a given non-decreasing affine section. These results are used to study (quasi-)copulas with arbitrary affine sections.
    13 schema:genre article
    14 schema:inLanguage en
    15 schema:isAccessibleForFree false
    16 schema:isPartOf N36042abc1886448d917b7d286fe4d46e
    17 Nf53261d47620477aa3cd92c3fcc2ae0e
    18 sg:journal.1049395
    19 schema:keywords affine section
    20 aggregation operators
    21 arbitrary affine sections
    22 better bounds
    23 bounds
    24 copula
    25 greatest copula
    26 intervals
    27 non-decreasing affine section
    28 operators
    29 quasi-copulas
    30 results
    31 sections
    32 upper bounds
    33 schema:name Intervals of 1-Lipschitz aggregation operators, quasi-copulas, and copulas with given affine section
    34 schema:pagination 151-167
    35 schema:productId N9312e4b79a65483c9424a5173b396e4c
    36 Nc41fc16abe9f4d9586db5bbf3330c517
    37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012415448
    38 https://doi.org/10.1007/s00605-007-0460-x
    39 schema:sdDatePublished 2022-01-01T18:16
    40 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    41 schema:sdPublisher N5c118a7b55c44e05947918efccb73fae
    42 schema:url https://doi.org/10.1007/s00605-007-0460-x
    43 sgo:license sg:explorer/license/
    44 sgo:sdDataset articles
    45 rdf:type schema:ScholarlyArticle
    46 N36042abc1886448d917b7d286fe4d46e schema:issueNumber 2
    47 rdf:type schema:PublicationIssue
    48 N4f7b3c3a95474625b16745823037064e rdf:first sg:person.010620407107.52
    49 rdf:rest N97be1ed5e8a04cb894da6e9464373712
    50 N5c118a7b55c44e05947918efccb73fae schema:name Springer Nature - SN SciGraph project
    51 rdf:type schema:Organization
    52 N9312e4b79a65483c9424a5173b396e4c schema:name doi
    53 schema:value 10.1007/s00605-007-0460-x
    54 rdf:type schema:PropertyValue
    55 N97be1ed5e8a04cb894da6e9464373712 rdf:first sg:person.013323425473.28
    56 rdf:rest rdf:nil
    57 Nc41fc16abe9f4d9586db5bbf3330c517 schema:name dimensions_id
    58 schema:value pub.1012415448
    59 rdf:type schema:PropertyValue
    60 Nf53261d47620477aa3cd92c3fcc2ae0e schema:volumeNumber 152
    61 rdf:type schema:PublicationVolume
    62 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    63 schema:name Mathematical Sciences
    64 rdf:type schema:DefinedTerm
    65 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    66 schema:name Pure Mathematics
    67 rdf:type schema:DefinedTerm
    68 sg:journal.1049395 schema:issn 0026-9255
    69 1436-5081
    70 schema:name Monatshefte für Mathematik
    71 schema:publisher Springer Nature
    72 rdf:type schema:Periodical
    73 sg:person.010620407107.52 schema:affiliation grid-institutes:grid.9970.7
    74 schema:familyName Klement
    75 schema:givenName Erich Peter
    76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010620407107.52
    77 rdf:type schema:Person
    78 sg:person.013323425473.28 schema:affiliation grid-institutes:grid.440789.6
    79 schema:familyName Kolesárová
    80 schema:givenName Anna
    81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013323425473.28
    82 rdf:type schema:Person
    83 sg:pub.10.1007/978-1-4757-3076-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007031563
    84 https://doi.org/10.1007/978-1-4757-3076-0
    85 rdf:type schema:CreativeWork
    86 sg:pub.10.1007/978-3-7908-1787-4_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011113308
    87 https://doi.org/10.1007/978-3-7908-1787-4_1
    88 rdf:type schema:CreativeWork
    89 sg:pub.10.1007/978-94-011-5532-8_16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017813050
    90 https://doi.org/10.1007/978-94-011-5532-8_16
    91 rdf:type schema:CreativeWork
    92 sg:pub.10.1007/978-94-015-9540-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025931387
    93 https://doi.org/10.1007/978-94-015-9540-7
    94 rdf:type schema:CreativeWork
    95 sg:pub.10.1007/978-94-017-0061-0_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044820219
    96 https://doi.org/10.1007/978-94-017-0061-0_10
    97 rdf:type schema:CreativeWork
    98 sg:pub.10.1007/bf01855882 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000780481
    99 https://doi.org/10.1007/bf01855882
    100 rdf:type schema:CreativeWork
    101 grid-institutes:grid.440789.6 schema:alternateName Slovak University of Technology, Bratislava, Slovakia
    102 schema:name Slovak University of Technology, Bratislava, Slovakia
    103 rdf:type schema:Organization
    104 grid-institutes:grid.9970.7 schema:alternateName Johannes Kepler University, Linz, Austria
    105 schema:name Johannes Kepler University, Linz, Austria
    106 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...