On a Family of Thue Equations Over Function Fields View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2005-11-16

AUTHORS

Clemens Fuchs, Volker Ziegler

ABSTRACT

.Many families of parametrized Thue equations over number fields have been solved recently. In this paper we consider for the first time a family of Thue equations over a polynomial ring. In particular, we calculate all solutions of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X(X-Y)(X-(T+\xi)Y)+Y^3=1+\xi T(1-T)$$\end{document} over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\Bbb C}[T]$\end{document} for all \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\xi\in{\Bbb C}$\end{document}. More... »

PAGES

11-23

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00605-005-0330-3

DOI

http://dx.doi.org/10.1007/s00605-005-0330-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1032124782


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Universiteit Leiden, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.5132.5", 
          "name": [
            "Universiteit Leiden, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fuchs", 
        "givenName": "Clemens", 
        "id": "sg:person.011534256073.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011534256073.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technische Universit\u00e4t Graz, Austria", 
          "id": "http://www.grid.ac/institutes/grid.410413.3", 
          "name": [
            "Technische Universit\u00e4t Graz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ziegler", 
        "givenName": "Volker", 
        "id": "sg:person.010167602321.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010167602321.26"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01960551", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048769637", 
          "https://doi.org/10.1007/bf01960551"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s006050170037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033630814", 
          "https://doi.org/10.1007/s006050170037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-6046-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047857967", 
          "https://doi.org/10.1007/978-1-4757-6046-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-1810-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007059431", 
          "https://doi.org/10.1007/978-1-4757-1810-2"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2005-11-16", 
    "datePublishedReg": "2005-11-16", 
    "description": "Abstract.Many families of parametrized Thue equations over number fields have been solved recently. In this paper we consider for the first time a family of Thue equations over a polynomial ring. In particular, we calculate all solutions of \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$X(X-Y)(X-(T+\\xi)Y)+Y^3=1+\\xi T(1-T)$$\\end{document}\n\t\t\t\t\t over \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}${\\Bbb C}[T]$\\end{document} for all \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\xi\\in{\\Bbb C}$\\end{document}.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00605-005-0330-3", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1049395", 
        "issn": [
          "0026-9255", 
          "1436-5081"
        ], 
        "name": "Monatshefte f\u00fcr Mathematik", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "147"
      }
    ], 
    "keywords": [
      "Thue equations", 
      "function fields", 
      "number field", 
      "polynomial ring", 
      "equations", 
      "solution", 
      "field", 
      "family", 
      "time", 
      "first time", 
      "ring", 
      "paper", 
      "parametrized Thue equations"
    ], 
    "name": "On a Family of Thue Equations Over Function Fields", 
    "pagination": "11-23", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1032124782"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00605-005-0330-3"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00605-005-0330-3", 
      "https://app.dimensions.ai/details/publication/pub.1032124782"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_404.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00605-005-0330-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00605-005-0330-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00605-005-0330-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00605-005-0330-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00605-005-0330-3'


 

This table displays all metadata directly associated to this object as RDF triples.

97 TRIPLES      22 PREDICATES      42 URIs      30 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00605-005-0330-3 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N4b59d0ac557d4cf18dff74fd4bb007d2
4 schema:citation sg:pub.10.1007/978-1-4757-1810-2
5 sg:pub.10.1007/978-1-4757-6046-0
6 sg:pub.10.1007/bf01960551
7 sg:pub.10.1007/s006050170037
8 schema:datePublished 2005-11-16
9 schema:datePublishedReg 2005-11-16
10 schema:description Abstract.Many families of parametrized Thue equations over number fields have been solved recently. In this paper we consider for the first time a family of Thue equations over a polynomial ring. In particular, we calculate all solutions of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X(X-Y)(X-(T+\xi)Y)+Y^3=1+\xi T(1-T)$$\end{document} over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\Bbb C}[T]$\end{document} for all \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\xi\in{\Bbb C}$\end{document}.
11 schema:genre article
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf Nc1ec464aaf9543b89519fab2f941dd4e
15 Nd3816029c62f4279bc2a179d1a1464c2
16 sg:journal.1049395
17 schema:keywords Thue equations
18 equations
19 family
20 field
21 first time
22 function fields
23 number field
24 paper
25 parametrized Thue equations
26 polynomial ring
27 ring
28 solution
29 time
30 schema:name On a Family of Thue Equations Over Function Fields
31 schema:pagination 11-23
32 schema:productId N994a8d39b3554b909549c74802daa836
33 Nde07e43b030c403aaffe88d8e42a1757
34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032124782
35 https://doi.org/10.1007/s00605-005-0330-3
36 schema:sdDatePublished 2022-01-01T18:14
37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
38 schema:sdPublisher N41c91fc1a175482f8797515302376d80
39 schema:url https://doi.org/10.1007/s00605-005-0330-3
40 sgo:license sg:explorer/license/
41 sgo:sdDataset articles
42 rdf:type schema:ScholarlyArticle
43 N1597c354e10e4f25808e3920fa1b70f5 rdf:first sg:person.010167602321.26
44 rdf:rest rdf:nil
45 N41c91fc1a175482f8797515302376d80 schema:name Springer Nature - SN SciGraph project
46 rdf:type schema:Organization
47 N4b59d0ac557d4cf18dff74fd4bb007d2 rdf:first sg:person.011534256073.49
48 rdf:rest N1597c354e10e4f25808e3920fa1b70f5
49 N994a8d39b3554b909549c74802daa836 schema:name doi
50 schema:value 10.1007/s00605-005-0330-3
51 rdf:type schema:PropertyValue
52 Nc1ec464aaf9543b89519fab2f941dd4e schema:volumeNumber 147
53 rdf:type schema:PublicationVolume
54 Nd3816029c62f4279bc2a179d1a1464c2 schema:issueNumber 1
55 rdf:type schema:PublicationIssue
56 Nde07e43b030c403aaffe88d8e42a1757 schema:name dimensions_id
57 schema:value pub.1032124782
58 rdf:type schema:PropertyValue
59 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
60 schema:name Mathematical Sciences
61 rdf:type schema:DefinedTerm
62 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
63 schema:name Pure Mathematics
64 rdf:type schema:DefinedTerm
65 sg:journal.1049395 schema:issn 0026-9255
66 1436-5081
67 schema:name Monatshefte für Mathematik
68 schema:publisher Springer Nature
69 rdf:type schema:Periodical
70 sg:person.010167602321.26 schema:affiliation grid-institutes:grid.410413.3
71 schema:familyName Ziegler
72 schema:givenName Volker
73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010167602321.26
74 rdf:type schema:Person
75 sg:person.011534256073.49 schema:affiliation grid-institutes:grid.5132.5
76 schema:familyName Fuchs
77 schema:givenName Clemens
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011534256073.49
79 rdf:type schema:Person
80 sg:pub.10.1007/978-1-4757-1810-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007059431
81 https://doi.org/10.1007/978-1-4757-1810-2
82 rdf:type schema:CreativeWork
83 sg:pub.10.1007/978-1-4757-6046-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047857967
84 https://doi.org/10.1007/978-1-4757-6046-0
85 rdf:type schema:CreativeWork
86 sg:pub.10.1007/bf01960551 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048769637
87 https://doi.org/10.1007/bf01960551
88 rdf:type schema:CreativeWork
89 sg:pub.10.1007/s006050170037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033630814
90 https://doi.org/10.1007/s006050170037
91 rdf:type schema:CreativeWork
92 grid-institutes:grid.410413.3 schema:alternateName Technische Universität Graz, Austria
93 schema:name Technische Universität Graz, Austria
94 rdf:type schema:Organization
95 grid-institutes:grid.5132.5 schema:alternateName Universiteit Leiden, The Netherlands
96 schema:name Universiteit Leiden, The Netherlands
97 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...