Detection of micrococcal nuclease for identifying Staphylococcus aureus based on DNA templated fluorescent copper nanoclusters View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Taiping Qing, Caicheng Long, Xuan Wang, Kaiwu Zhang, Peng Zhang, Bo Feng

ABSTRACT

Micrococcal nuclease (MNase) is a naturally-secreted nucleic acid degrading enzyme with important role in the spread of the bacteria in an infected host. The content of MNase can be used to estimate the pathogenicity of Staphylococcus aureus (S. aureus). A fluorometric method is described here for determination of the activity of MNase and for identification of S. aureus using DNA templated fluorescent copper nanoclusters (CuNC). A double-stranded DNA (dsDNA) with AT-rich regions and protruding 3'-termini was identified as a high-selectivity substrate for MNase and as a template for CuNC. In the absence of MNase, the long AT-rich dsDNA templates the formation of CuNC that display bright yellow fluorescence, with excitation/emission peaks at 340/570 nm. However, the substrates are enzymatically digested to mononucleotides or short-oligonucleotide fragments, which fail to synthesize fluorescent CuNC. The method works in the 1.0 × 10-3 - 5.0 × 10-2 U mL-1 MNase activity range, has a 1.0 mU mL-1 detection limit, and is highly selective over other exonucleases. The assay was successfully applied to the detection of MNase secreted by S. aureus and to the identification of S. aureus. Graphical abstract A smart dsDNA, with AT-rich regions and 3'-protruding termini, is screened as the high-selectivity substrate for MNase and template for the formation of copper nanoclusters (CuNC). A method is described for determination of the activity of MNase and for identification of S. aureus via smart DNA templated formation of fluorescent CuNCs. More... »

PAGES

248

Journal

TITLE

Microchimica Acta

ISSUE

4

VOLUME

186

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00604-019-3363-3

DOI

http://dx.doi.org/10.1007/s00604-019-3363-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112849853

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30887121


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Xiangtan University", 
          "id": "https://www.grid.ac/institutes/grid.412982.4", 
          "name": [
            "College of Environment and Resources, Xiangtan University, 411105, Xiangtan, Hunan Province, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Qing", 
        "givenName": "Taiping", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Xiangtan University", 
          "id": "https://www.grid.ac/institutes/grid.412982.4", 
          "name": [
            "College of Environment and Resources, Xiangtan University, 411105, Xiangtan, Hunan Province, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Long", 
        "givenName": "Caicheng", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Xiangtan University", 
          "id": "https://www.grid.ac/institutes/grid.412982.4", 
          "name": [
            "College of Environment and Resources, Xiangtan University, 411105, Xiangtan, Hunan Province, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Xuan", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Xiangtan University", 
          "id": "https://www.grid.ac/institutes/grid.412982.4", 
          "name": [
            "College of Environment and Resources, Xiangtan University, 411105, Xiangtan, Hunan Province, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Kaiwu", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Xiangtan University", 
          "id": "https://www.grid.ac/institutes/grid.412982.4", 
          "name": [
            "College of Environment and Resources, Xiangtan University, 411105, Xiangtan, Hunan Province, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Peng", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Xiangtan University", 
          "id": "https://www.grid.ac/institutes/grid.412982.4", 
          "name": [
            "College of Environment and Resources, Xiangtan University, 411105, Xiangtan, Hunan Province, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Feng", 
        "givenName": "Bo", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1039/c5ra20773h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000186225"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.79.21.6458", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001876805"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b815061c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004558156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mib.2013.11.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006022556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c4cc05101g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006551049"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c4ra11551a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007074033"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/iai.70.2.631-641.2002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011310654"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmcp070747", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012812153"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c0an00254b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013994982"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/s140712437", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016471078"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bios.2014.09.059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016700603"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/anie.201304631", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016766610"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c5cc03144c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021772823"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00216-015-9240-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022390802", 
          "https://doi.org/10.1007/s00216-015-9240-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nm.3460", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029423318", 
          "https://doi.org/10.1038/nm.3460"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bios.2015.11.057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033097034"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/9.12.2643", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036172957"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.talanta.2015.08.055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038830307"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/iai.01242-12", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039065039"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.snb.2015.07.121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039181581"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bios.2016.11.047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043220658"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jcm.00478-08", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048346803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mpmed.2013.10.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048399911"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bios.2015.02.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050342602"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bios.2012.10.045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050998012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jcm.01477-07", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052063162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acsami.5b06446", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055127888"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1081519968", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ymthe.2017.03.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084535865"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00604-017-2396-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090352797", 
          "https://doi.org/10.1007/s00604-017-2396-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00604-017-2396-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090352797", 
          "https://doi.org/10.1007/s00604-017-2396-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c7nj01761h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090909304"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.snb.2017.08.087", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091218256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00604-017-2517-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091841775", 
          "https://doi.org/10.1007/s00604-017-2517-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00604-018-2702-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101083218", 
          "https://doi.org/10.1007/s00604-018-2702-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.trac.2018.06.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104525945"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00604-018-2935-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106119005", 
          "https://doi.org/10.1007/s00604-018-2935-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00604-018-3102-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110395494", 
          "https://doi.org/10.1007/s00604-018-3102-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00604-018-3102-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110395494", 
          "https://doi.org/10.1007/s00604-018-3102-1"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "Micrococcal nuclease (MNase) is a naturally-secreted nucleic acid degrading enzyme with important role in the spread of the bacteria in an infected host. The content of MNase can be used to estimate the pathogenicity of Staphylococcus aureus (S. aureus). A fluorometric\u00a0method is described here for determination of the activity of MNase and for identification of S. aureus using DNA templated fluorescent copper nanoclusters (CuNC). A double-stranded DNA (dsDNA) with AT-rich regions and protruding 3'-termini was identified as a high-selectivity substrate for MNase and as a template for CuNC. In the absence of MNase, the long AT-rich dsDNA templates the formation of CuNC that display bright yellow fluorescence, with excitation/emission peaks at 340/570\u00a0nm. However, the substrates are enzymatically digested to mononucleotides or short-oligonucleotide fragments, which fail to synthesize fluorescent CuNC. The method works in the 1.0\u2009\u00d7\u200910-3 - 5.0\u2009\u00d7\u200910-2\u00a0U\u00a0mL-1 MNase activity range, has a 1.0\u00a0mU\u00a0mL-1 detection limit, and is highly selective over other exonucleases. The assay was successfully applied to the detection of MNase secreted by S. aureus and to the identification of S. aureus. Graphical abstract A smart dsDNA, with AT-rich regions and 3'-protruding termini, is screened as the high-selectivity substrate\u00a0for MNase and template for the formation of copper nanoclusters (CuNC). A method is described for determination of the activity of MNase and for identification of S. aureus via smart DNA templated\u00a0formation of fluorescent CuNCs.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00604-019-3363-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1009468", 
        "issn": [
          "0026-3672", 
          "1436-5073"
        ], 
        "name": "Microchimica Acta", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "186"
      }
    ], 
    "name": "Detection of micrococcal nuclease for identifying Staphylococcus aureus based on DNA templated fluorescent copper nanoclusters", 
    "pagination": "248", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0b31087d6cef597b777d864efe867883fd298ea63eae1968b58497ff1b120f08"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30887121"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "7808782"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00604-019-3363-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112849853"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00604-019-3363-3", 
      "https://app.dimensions.ai/details/publication/pub.1112849853"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:17", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78935_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00604-019-3363-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00604-019-3363-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00604-019-3363-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00604-019-3363-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00604-019-3363-3'


 

This table displays all metadata directly associated to this object as RDF triples.

215 TRIPLES      21 PREDICATES      66 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00604-019-3363-3 schema:about anzsrc-for:11
2 anzsrc-for:1103
3 schema:author N105b8b69ac1f4e389abb1831e2fae889
4 schema:citation sg:pub.10.1007/s00216-015-9240-y
5 sg:pub.10.1007/s00604-017-2396-8
6 sg:pub.10.1007/s00604-017-2517-4
7 sg:pub.10.1007/s00604-018-2702-0
8 sg:pub.10.1007/s00604-018-2935-y
9 sg:pub.10.1007/s00604-018-3102-1
10 sg:pub.10.1038/nm.3460
11 https://app.dimensions.ai/details/publication/pub.1081519968
12 https://doi.org/10.1002/anie.201304631
13 https://doi.org/10.1016/j.bios.2012.10.045
14 https://doi.org/10.1016/j.bios.2014.09.059
15 https://doi.org/10.1016/j.bios.2015.02.012
16 https://doi.org/10.1016/j.bios.2015.11.057
17 https://doi.org/10.1016/j.bios.2016.11.047
18 https://doi.org/10.1016/j.mib.2013.11.004
19 https://doi.org/10.1016/j.mpmed.2013.10.016
20 https://doi.org/10.1016/j.snb.2015.07.121
21 https://doi.org/10.1016/j.snb.2017.08.087
22 https://doi.org/10.1016/j.talanta.2015.08.055
23 https://doi.org/10.1016/j.trac.2018.06.003
24 https://doi.org/10.1016/j.ymthe.2017.03.015
25 https://doi.org/10.1021/acsami.5b06446
26 https://doi.org/10.1039/b815061c
27 https://doi.org/10.1039/c0an00254b
28 https://doi.org/10.1039/c4cc05101g
29 https://doi.org/10.1039/c4ra11551a
30 https://doi.org/10.1039/c5cc03144c
31 https://doi.org/10.1039/c5ra20773h
32 https://doi.org/10.1039/c7nj01761h
33 https://doi.org/10.1056/nejmcp070747
34 https://doi.org/10.1073/pnas.79.21.6458
35 https://doi.org/10.1093/nar/9.12.2643
36 https://doi.org/10.1128/iai.01242-12
37 https://doi.org/10.1128/iai.70.2.631-641.2002
38 https://doi.org/10.1128/jcm.00478-08
39 https://doi.org/10.1128/jcm.01477-07
40 https://doi.org/10.3390/s140712437
41 schema:datePublished 2019-04
42 schema:datePublishedReg 2019-04-01
43 schema:description Micrococcal nuclease (MNase) is a naturally-secreted nucleic acid degrading enzyme with important role in the spread of the bacteria in an infected host. The content of MNase can be used to estimate the pathogenicity of Staphylococcus aureus (S. aureus). A fluorometric method is described here for determination of the activity of MNase and for identification of S. aureus using DNA templated fluorescent copper nanoclusters (CuNC). A double-stranded DNA (dsDNA) with AT-rich regions and protruding 3'-termini was identified as a high-selectivity substrate for MNase and as a template for CuNC. In the absence of MNase, the long AT-rich dsDNA templates the formation of CuNC that display bright yellow fluorescence, with excitation/emission peaks at 340/570 nm. However, the substrates are enzymatically digested to mononucleotides or short-oligonucleotide fragments, which fail to synthesize fluorescent CuNC. The method works in the 1.0 × 10<sup>-3</sup> - 5.0 × 10<sup>-2</sup> U mL<sup>-1</sup> MNase activity range, has a 1.0 mU mL<sup>-1</sup> detection limit, and is highly selective over other exonucleases. The assay was successfully applied to the detection of MNase secreted by S. aureus and to the identification of S. aureus. Graphical abstract A smart dsDNA, with AT-rich regions and 3'-protruding termini, is screened as the high-selectivity substrate for MNase and template for the formation of copper nanoclusters (CuNC). A method is described for determination of the activity of MNase and for identification of S. aureus via smart DNA templated formation of fluorescent CuNCs.
44 schema:genre research_article
45 schema:inLanguage en
46 schema:isAccessibleForFree false
47 schema:isPartOf N2da3b166bd2e49adb8c1fc149741a7c2
48 Nd98dad8ff41e4216b106d01132fd3950
49 sg:journal.1009468
50 schema:name Detection of micrococcal nuclease for identifying Staphylococcus aureus based on DNA templated fluorescent copper nanoclusters
51 schema:pagination 248
52 schema:productId N070351a769bd40f797378f2df2164948
53 N746cbd39205f417ea6cd09ff88c46feb
54 Na24ae492621c4620a223bd8b8cb0e3fe
55 Nd960f23fb69f4a399a54252997b4029d
56 Nf1285b00a898403aab2d3bbcb76c48db
57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112849853
58 https://doi.org/10.1007/s00604-019-3363-3
59 schema:sdDatePublished 2019-04-11T13:17
60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
61 schema:sdPublisher N6a6a412ae04d4ec690c7c130e4f29693
62 schema:url https://link.springer.com/10.1007%2Fs00604-019-3363-3
63 sgo:license sg:explorer/license/
64 sgo:sdDataset articles
65 rdf:type schema:ScholarlyArticle
66 N070351a769bd40f797378f2df2164948 schema:name readcube_id
67 schema:value 0b31087d6cef597b777d864efe867883fd298ea63eae1968b58497ff1b120f08
68 rdf:type schema:PropertyValue
69 N105b8b69ac1f4e389abb1831e2fae889 rdf:first N77abbb093ec741c093a6dc49603db6db
70 rdf:rest N8e8b18d9afc3486283c74f9fc5fd0519
71 N109409a3e6c24a7f83478b583984d080 schema:affiliation https://www.grid.ac/institutes/grid.412982.4
72 schema:familyName Wang
73 schema:givenName Xuan
74 rdf:type schema:Person
75 N2da3b166bd2e49adb8c1fc149741a7c2 schema:issueNumber 4
76 rdf:type schema:PublicationIssue
77 N4e20f350fddc4b7e9a4c7729b431c0a0 schema:affiliation https://www.grid.ac/institutes/grid.412982.4
78 schema:familyName Zhang
79 schema:givenName Peng
80 rdf:type schema:Person
81 N5fad02beecb149b79940a2f988580817 rdf:first N6c4fcaa138a14fde973870506c7af9d8
82 rdf:rest rdf:nil
83 N6a6a412ae04d4ec690c7c130e4f29693 schema:name Springer Nature - SN SciGraph project
84 rdf:type schema:Organization
85 N6c4fcaa138a14fde973870506c7af9d8 schema:affiliation https://www.grid.ac/institutes/grid.412982.4
86 schema:familyName Feng
87 schema:givenName Bo
88 rdf:type schema:Person
89 N746cbd39205f417ea6cd09ff88c46feb schema:name doi
90 schema:value 10.1007/s00604-019-3363-3
91 rdf:type schema:PropertyValue
92 N7483e78f1f764297a5ebe8c17a82fe5a schema:affiliation https://www.grid.ac/institutes/grid.412982.4
93 schema:familyName Long
94 schema:givenName Caicheng
95 rdf:type schema:Person
96 N77abbb093ec741c093a6dc49603db6db schema:affiliation https://www.grid.ac/institutes/grid.412982.4
97 schema:familyName Qing
98 schema:givenName Taiping
99 rdf:type schema:Person
100 N89ca5c49708a4c999dadbaa4d658eb7c rdf:first Nb2e8f5e10ab34bdcad0d5161202cc9d6
101 rdf:rest Nb31a9ad87066464a919d7c0e7757cfdf
102 N8e8b18d9afc3486283c74f9fc5fd0519 rdf:first N7483e78f1f764297a5ebe8c17a82fe5a
103 rdf:rest Nb3cddafee81742ef94292e6315cb030d
104 Na24ae492621c4620a223bd8b8cb0e3fe schema:name nlm_unique_id
105 schema:value 7808782
106 rdf:type schema:PropertyValue
107 Nb2e8f5e10ab34bdcad0d5161202cc9d6 schema:affiliation https://www.grid.ac/institutes/grid.412982.4
108 schema:familyName Zhang
109 schema:givenName Kaiwu
110 rdf:type schema:Person
111 Nb31a9ad87066464a919d7c0e7757cfdf rdf:first N4e20f350fddc4b7e9a4c7729b431c0a0
112 rdf:rest N5fad02beecb149b79940a2f988580817
113 Nb3cddafee81742ef94292e6315cb030d rdf:first N109409a3e6c24a7f83478b583984d080
114 rdf:rest N89ca5c49708a4c999dadbaa4d658eb7c
115 Nd960f23fb69f4a399a54252997b4029d schema:name dimensions_id
116 schema:value pub.1112849853
117 rdf:type schema:PropertyValue
118 Nd98dad8ff41e4216b106d01132fd3950 schema:volumeNumber 186
119 rdf:type schema:PublicationVolume
120 Nf1285b00a898403aab2d3bbcb76c48db schema:name pubmed_id
121 schema:value 30887121
122 rdf:type schema:PropertyValue
123 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
124 schema:name Medical and Health Sciences
125 rdf:type schema:DefinedTerm
126 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
127 schema:name Clinical Sciences
128 rdf:type schema:DefinedTerm
129 sg:journal.1009468 schema:issn 0026-3672
130 1436-5073
131 schema:name Microchimica Acta
132 rdf:type schema:Periodical
133 sg:pub.10.1007/s00216-015-9240-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1022390802
134 https://doi.org/10.1007/s00216-015-9240-y
135 rdf:type schema:CreativeWork
136 sg:pub.10.1007/s00604-017-2396-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090352797
137 https://doi.org/10.1007/s00604-017-2396-8
138 rdf:type schema:CreativeWork
139 sg:pub.10.1007/s00604-017-2517-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091841775
140 https://doi.org/10.1007/s00604-017-2517-4
141 rdf:type schema:CreativeWork
142 sg:pub.10.1007/s00604-018-2702-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101083218
143 https://doi.org/10.1007/s00604-018-2702-0
144 rdf:type schema:CreativeWork
145 sg:pub.10.1007/s00604-018-2935-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1106119005
146 https://doi.org/10.1007/s00604-018-2935-y
147 rdf:type schema:CreativeWork
148 sg:pub.10.1007/s00604-018-3102-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110395494
149 https://doi.org/10.1007/s00604-018-3102-1
150 rdf:type schema:CreativeWork
151 sg:pub.10.1038/nm.3460 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029423318
152 https://doi.org/10.1038/nm.3460
153 rdf:type schema:CreativeWork
154 https://app.dimensions.ai/details/publication/pub.1081519968 schema:CreativeWork
155 https://doi.org/10.1002/anie.201304631 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016766610
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.bios.2012.10.045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050998012
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.bios.2014.09.059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016700603
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/j.bios.2015.02.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050342602
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/j.bios.2015.11.057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033097034
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/j.bios.2016.11.047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043220658
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/j.mib.2013.11.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006022556
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/j.mpmed.2013.10.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048399911
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/j.snb.2015.07.121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039181581
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/j.snb.2017.08.087 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091218256
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/j.talanta.2015.08.055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038830307
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/j.trac.2018.06.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104525945
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/j.ymthe.2017.03.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084535865
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1021/acsami.5b06446 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055127888
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1039/b815061c schema:sameAs https://app.dimensions.ai/details/publication/pub.1004558156
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1039/c0an00254b schema:sameAs https://app.dimensions.ai/details/publication/pub.1013994982
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1039/c4cc05101g schema:sameAs https://app.dimensions.ai/details/publication/pub.1006551049
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1039/c4ra11551a schema:sameAs https://app.dimensions.ai/details/publication/pub.1007074033
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1039/c5cc03144c schema:sameAs https://app.dimensions.ai/details/publication/pub.1021772823
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1039/c5ra20773h schema:sameAs https://app.dimensions.ai/details/publication/pub.1000186225
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1039/c7nj01761h schema:sameAs https://app.dimensions.ai/details/publication/pub.1090909304
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1056/nejmcp070747 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012812153
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1073/pnas.79.21.6458 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001876805
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1093/nar/9.12.2643 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036172957
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1128/iai.01242-12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039065039
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1128/iai.70.2.631-641.2002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011310654
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1128/jcm.00478-08 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048346803
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1128/jcm.01477-07 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052063162
210 rdf:type schema:CreativeWork
211 https://doi.org/10.3390/s140712437 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016471078
212 rdf:type schema:CreativeWork
213 https://www.grid.ac/institutes/grid.412982.4 schema:alternateName Xiangtan University
214 schema:name College of Environment and Resources, Xiangtan University, 411105, Xiangtan, Hunan Province, China
215 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...