Tannic acid-derivatized graphitic carbon nitride quantum dots as an “on-off-on” fluorescent nanoprobe for ascorbic acid via copper(II) mediation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02

AUTHORS

Ojodomo J. Achadu, Neerish Revaprasadu

ABSTRACT

A microwave-assisted hydrothermal route was employed to prepare fluorescent tannic acid (TA)-derivatized graphitic carbon nitride quantum dots. The resulting dots display blue fluorescence (best measured at excitation/emission wavelengths of 350/452 nm) with a quantum yield as high as ~44%. The incorporated TA imparts a fluorescence switching behavior in that very low concentrations of Cu(II) can quench the fluorescence, while (AA) can restore it. It is presumed that AA causes Cu(II) to be transformed to Cu(I). Based on these findings, a fluorometric method was designed for AA detection. The probe allows AA to be detected with a 50 pM limit of detection and a linear analytical range that extends from 0.1 to 200 nM of AA. Real and spiked samples were successfully assayed by the probe to demonstrate its analytical applicability. Graphical abstract Schematic presentation of fluorescent graphitic carbon nitride quantum dots functionalized with tannic acid. Their fluorescence is quenched by Cu2+ and recovered by ascorbic acid (AA). This is exploited in an assay with a picomolar detection limit. More... »

PAGES

87

References to SciGraph publications

  • 2018-02. Highly crystalline graphitic carbon nitride quantum dots as a fluorescent probe for detection of Fe(III) via an innner filter effect in MICROCHIMICA ACTA
  • 2017-05. On−off−on gold nanocluster-based near infrared fluorescent probe for recognition of Cu(II) and vitamin C in MICROCHIMICA ACTA
  • 2015-07. Graphene quantum dots as on-off-on fluorescent probes for chromium(VI) and ascorbic acid in MICROCHIMICA ACTA
  • 2014-08. Terbium(III) based coordination polymer microparticles as a luminescent probe for ascorbic acid in MICROCHIMICA ACTA
  • 2018-09. A dual-model strategy for fluorometric determination of ascorbic acid and of ascorbic acid oxidase activity by using DNA-templated gold-silver nanoclusters in MICROCHIMICA ACTA
  • 2018-07. Ultrasensitive detection of heparin by exploiting the silver nanoparticle-enhanced fluorescence of graphitic carbon nitride (g-C3N4) quantum dots in MICROCHIMICA ACTA
  • 2016-06. Reduced graphene oxide nanosheets functionalized with poly(styrene sulfonate) as a peroxidase mimetic in a colorimetric assay for ascorbic acid in MICROCHIMICA ACTA
  • 2018-01. Ratiometric ultrasensitive fluorometric detection of ascorbic acid using a dually emitting CdSe@SiO2@CdTe quantum dot hybrid in MICROCHIMICA ACTA
  • 2018-10. Graphitic carbon nitride quantum dots as an “off-on” fluorescent switch for determination of mercury(II) and sulfide in MICROCHIMICA ACTA
  • 2018-10. Microwave-assisted synthesis of thymine-functionalized graphitic carbon nitride quantum dots as a fluorescent nanoprobe for mercury(II) in MICROCHIMICA ACTA
  • 2016-07. Theoretical Investigations of Optical Origins of Fluorescent Graphene Quantum Dots in SCIENTIFIC REPORTS
  • 2016-05. Copper nanoclusters as an on-off-on fluorescent probe for ascorbic acid in MICROCHIMICA ACTA
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00604-018-3203-x

    DOI

    http://dx.doi.org/10.1007/s00604-018-3203-x

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1111328630

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30631929


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0303", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Macromolecular and Materials Chemistry", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Zululand", 
              "id": "https://www.grid.ac/institutes/grid.442325.6", 
              "name": [
                "Department of Chemistry, University of Zululand, Private Bag X1001, 3886, KwaDlangezwa, South Africa"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Achadu", 
            "givenName": "Ojodomo J.", 
            "id": "sg:person.01243335021.46", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01243335021.46"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Zululand", 
              "id": "https://www.grid.ac/institutes/grid.442325.6", 
              "name": [
                "Department of Chemistry, University of Zululand, Private Bag X1001, 3886, KwaDlangezwa, South Africa"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Revaprasadu", 
            "givenName": "Neerish", 
            "id": "sg:person.01320341433.36", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320341433.36"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00604-014-1282-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002638705", 
              "https://doi.org/10.1007/s00604-014-1282-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00604-016-1826-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005523473", 
              "https://doi.org/10.1007/s00604-016-1826-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.snb.2015.07.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006743883"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.aca.2015.08.011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008585102"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/smll.200900291", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010255652"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/smll.200900291", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010255652"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/adma.200401756", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010335191"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/adma.200401756", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010335191"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00604-015-1508-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011003213", 
              "https://doi.org/10.1007/s00604-015-1508-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3164/jcbn.15-105", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012360397"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/1521-4109(200010)12:14<1130::aid-elan1130>3.0.co;2-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013436965"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.bios.2014.12.024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021503692"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/c2an36112d", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022854479"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep24850", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028525822", 
              "https://doi.org/10.1038/srep24850"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/c2jm35501a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033015342"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.snb.2016.07.106", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034030148"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/c0an00056f", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036435147"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/c0an00056f", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036435147"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/c1ra00709b", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038263819"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.talanta.2011.02.019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038604586"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.aca.2006.05.015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041579224"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jelechem.2017.01.042", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045226773"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.talanta.2014.04.092", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046572837"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00604-016-1794-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046586671", 
              "https://doi.org/10.1007/s00604-016-1794-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.aca.2015.07.022", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049358568"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/c2jm31191g", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049963600"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/02772248.2015.1050201", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050286556"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00604-017-2111-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083829204", 
              "https://doi.org/10.1007/s00604-017-2111-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00604-017-2111-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083829204", 
              "https://doi.org/10.1007/s00604-017-2111-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.aca.2017.07.047", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090915016"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00604-017-2557-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099694962", 
              "https://doi.org/10.1007/s00604-017-2557-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00604-017-2655-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100668915", 
              "https://doi.org/10.1007/s00604-017-2655-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00604-018-2864-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105017349", 
              "https://doi.org/10.1007/s00604-018-2864-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00604-018-2954-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106283641", 
              "https://doi.org/10.1007/s00604-018-2954-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00604-018-3004-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107037527", 
              "https://doi.org/10.1007/s00604-018-3004-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00604-018-2994-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107121613", 
              "https://doi.org/10.1007/s00604-018-2994-0"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-02", 
        "datePublishedReg": "2019-02-01", 
        "description": "A microwave-assisted hydrothermal route was employed to prepare fluorescent tannic acid (TA)-derivatized graphitic carbon nitride quantum dots. The resulting dots display blue fluorescence (best measured at excitation/emission wavelengths of 350/452\u00a0nm) with a quantum yield as high as ~44%. The incorporated TA imparts a fluorescence switching behavior in that very low concentrations of Cu(II) can quench the fluorescence, while (AA) can restore it. It is presumed that AA causes Cu(II) to be transformed to Cu(I). Based on these findings, a fluorometric method was designed for AA detection. The probe allows AA to be detected with a 50 pM limit of detection and a linear analytical range that extends from 0.1 to 200\u00a0nM of AA. Real and spiked samples were successfully assayed by the probe to demonstrate its analytical applicability. Graphical abstract Schematic presentation of fluorescent graphitic carbon nitride quantum dots\u00a0functionalized with tannic acid. Their fluorescence is\u00a0quenched by Cu2+ and recovered by ascorbic acid (AA). This is exploited in an assay with a picomolar detection limit.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00604-018-3203-x", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1009468", 
            "issn": [
              "0026-3672", 
              "1436-5073"
            ], 
            "name": "Microchimica Acta", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "186"
          }
        ], 
        "name": "Tannic acid-derivatized graphitic carbon nitride quantum dots as an \u201con-off-on\u201d fluorescent nanoprobe for ascorbic acid via copper(II) mediation", 
        "pagination": "87", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "e5c8fc54009506daf5bba219b473c3427257c27545406753dc0ea545ac21603d"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30631929"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "7808782"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00604-018-3203-x"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1111328630"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00604-018-3203-x", 
          "https://app.dimensions.ai/details/publication/pub.1111328630"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T08:37", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000315_0000000315/records_6307_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs00604-018-3203-x"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00604-018-3203-x'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00604-018-3203-x'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00604-018-3203-x'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00604-018-3203-x'


     

    This table displays all metadata directly associated to this object as RDF triples.

    184 TRIPLES      21 PREDICATES      61 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00604-018-3203-x schema:about anzsrc-for:03
    2 anzsrc-for:0303
    3 schema:author N2d16a5a835e6414da42ce4c2fd2e1c0e
    4 schema:citation sg:pub.10.1007/s00604-014-1282-x
    5 sg:pub.10.1007/s00604-015-1508-6
    6 sg:pub.10.1007/s00604-016-1794-7
    7 sg:pub.10.1007/s00604-016-1826-3
    8 sg:pub.10.1007/s00604-017-2111-9
    9 sg:pub.10.1007/s00604-017-2557-9
    10 sg:pub.10.1007/s00604-017-2655-8
    11 sg:pub.10.1007/s00604-018-2864-9
    12 sg:pub.10.1007/s00604-018-2954-8
    13 sg:pub.10.1007/s00604-018-2994-0
    14 sg:pub.10.1007/s00604-018-3004-2
    15 sg:pub.10.1038/srep24850
    16 https://doi.org/10.1002/1521-4109(200010)12:14<1130::aid-elan1130>3.0.co;2-7
    17 https://doi.org/10.1002/adma.200401756
    18 https://doi.org/10.1002/smll.200900291
    19 https://doi.org/10.1016/j.aca.2006.05.015
    20 https://doi.org/10.1016/j.aca.2015.07.022
    21 https://doi.org/10.1016/j.aca.2015.08.011
    22 https://doi.org/10.1016/j.aca.2017.07.047
    23 https://doi.org/10.1016/j.bios.2014.12.024
    24 https://doi.org/10.1016/j.jelechem.2017.01.042
    25 https://doi.org/10.1016/j.snb.2015.07.002
    26 https://doi.org/10.1016/j.snb.2016.07.106
    27 https://doi.org/10.1016/j.talanta.2011.02.019
    28 https://doi.org/10.1016/j.talanta.2014.04.092
    29 https://doi.org/10.1039/c0an00056f
    30 https://doi.org/10.1039/c1ra00709b
    31 https://doi.org/10.1039/c2an36112d
    32 https://doi.org/10.1039/c2jm31191g
    33 https://doi.org/10.1039/c2jm35501a
    34 https://doi.org/10.1080/02772248.2015.1050201
    35 https://doi.org/10.3164/jcbn.15-105
    36 schema:datePublished 2019-02
    37 schema:datePublishedReg 2019-02-01
    38 schema:description A microwave-assisted hydrothermal route was employed to prepare fluorescent tannic acid (TA)-derivatized graphitic carbon nitride quantum dots. The resulting dots display blue fluorescence (best measured at excitation/emission wavelengths of 350/452 nm) with a quantum yield as high as ~44%. The incorporated TA imparts a fluorescence switching behavior in that very low concentrations of Cu(II) can quench the fluorescence, while (AA) can restore it. It is presumed that AA causes Cu(II) to be transformed to Cu(I). Based on these findings, a fluorometric method was designed for AA detection. The probe allows AA to be detected with a 50 pM limit of detection and a linear analytical range that extends from 0.1 to 200 nM of AA. Real and spiked samples were successfully assayed by the probe to demonstrate its analytical applicability. Graphical abstract Schematic presentation of fluorescent graphitic carbon nitride quantum dots functionalized with tannic acid. Their fluorescence is quenched by Cu<sup>2+</sup> and recovered by ascorbic acid (AA). This is exploited in an assay with a picomolar detection limit.
    39 schema:genre research_article
    40 schema:inLanguage en
    41 schema:isAccessibleForFree false
    42 schema:isPartOf N8bc3e0281b5d4e41ab9d90387d2aeb57
    43 Nb35ffc574caf4855b4bd6cf0cb0f36b2
    44 sg:journal.1009468
    45 schema:name Tannic acid-derivatized graphitic carbon nitride quantum dots as an “on-off-on” fluorescent nanoprobe for ascorbic acid via copper(II) mediation
    46 schema:pagination 87
    47 schema:productId N87df9b1ba8764997a6c26a167ec045b3
    48 N905e3d9a312a461fb98b3aa241c1bb68
    49 Naa34b43437a34effa6dca5600b0bc315
    50 Nd2725601094242e8abcef9b5359c0295
    51 Nf6ed31c3d0bd42858a9e5cfee1873e1d
    52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111328630
    53 https://doi.org/10.1007/s00604-018-3203-x
    54 schema:sdDatePublished 2019-04-11T08:37
    55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    56 schema:sdPublisher Nfce3896094574460a4322150a8e819bb
    57 schema:url https://link.springer.com/10.1007%2Fs00604-018-3203-x
    58 sgo:license sg:explorer/license/
    59 sgo:sdDataset articles
    60 rdf:type schema:ScholarlyArticle
    61 N2d16a5a835e6414da42ce4c2fd2e1c0e rdf:first sg:person.01243335021.46
    62 rdf:rest N8ccd3421975342118a5150a270580073
    63 N87df9b1ba8764997a6c26a167ec045b3 schema:name doi
    64 schema:value 10.1007/s00604-018-3203-x
    65 rdf:type schema:PropertyValue
    66 N8bc3e0281b5d4e41ab9d90387d2aeb57 schema:volumeNumber 186
    67 rdf:type schema:PublicationVolume
    68 N8ccd3421975342118a5150a270580073 rdf:first sg:person.01320341433.36
    69 rdf:rest rdf:nil
    70 N905e3d9a312a461fb98b3aa241c1bb68 schema:name pubmed_id
    71 schema:value 30631929
    72 rdf:type schema:PropertyValue
    73 Naa34b43437a34effa6dca5600b0bc315 schema:name readcube_id
    74 schema:value e5c8fc54009506daf5bba219b473c3427257c27545406753dc0ea545ac21603d
    75 rdf:type schema:PropertyValue
    76 Nb35ffc574caf4855b4bd6cf0cb0f36b2 schema:issueNumber 2
    77 rdf:type schema:PublicationIssue
    78 Nd2725601094242e8abcef9b5359c0295 schema:name dimensions_id
    79 schema:value pub.1111328630
    80 rdf:type schema:PropertyValue
    81 Nf6ed31c3d0bd42858a9e5cfee1873e1d schema:name nlm_unique_id
    82 schema:value 7808782
    83 rdf:type schema:PropertyValue
    84 Nfce3896094574460a4322150a8e819bb schema:name Springer Nature - SN SciGraph project
    85 rdf:type schema:Organization
    86 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    87 schema:name Chemical Sciences
    88 rdf:type schema:DefinedTerm
    89 anzsrc-for:0303 schema:inDefinedTermSet anzsrc-for:
    90 schema:name Macromolecular and Materials Chemistry
    91 rdf:type schema:DefinedTerm
    92 sg:journal.1009468 schema:issn 0026-3672
    93 1436-5073
    94 schema:name Microchimica Acta
    95 rdf:type schema:Periodical
    96 sg:person.01243335021.46 schema:affiliation https://www.grid.ac/institutes/grid.442325.6
    97 schema:familyName Achadu
    98 schema:givenName Ojodomo J.
    99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01243335021.46
    100 rdf:type schema:Person
    101 sg:person.01320341433.36 schema:affiliation https://www.grid.ac/institutes/grid.442325.6
    102 schema:familyName Revaprasadu
    103 schema:givenName Neerish
    104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320341433.36
    105 rdf:type schema:Person
    106 sg:pub.10.1007/s00604-014-1282-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1002638705
    107 https://doi.org/10.1007/s00604-014-1282-x
    108 rdf:type schema:CreativeWork
    109 sg:pub.10.1007/s00604-015-1508-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011003213
    110 https://doi.org/10.1007/s00604-015-1508-6
    111 rdf:type schema:CreativeWork
    112 sg:pub.10.1007/s00604-016-1794-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046586671
    113 https://doi.org/10.1007/s00604-016-1794-7
    114 rdf:type schema:CreativeWork
    115 sg:pub.10.1007/s00604-016-1826-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005523473
    116 https://doi.org/10.1007/s00604-016-1826-3
    117 rdf:type schema:CreativeWork
    118 sg:pub.10.1007/s00604-017-2111-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083829204
    119 https://doi.org/10.1007/s00604-017-2111-9
    120 rdf:type schema:CreativeWork
    121 sg:pub.10.1007/s00604-017-2557-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099694962
    122 https://doi.org/10.1007/s00604-017-2557-9
    123 rdf:type schema:CreativeWork
    124 sg:pub.10.1007/s00604-017-2655-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100668915
    125 https://doi.org/10.1007/s00604-017-2655-8
    126 rdf:type schema:CreativeWork
    127 sg:pub.10.1007/s00604-018-2864-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105017349
    128 https://doi.org/10.1007/s00604-018-2864-9
    129 rdf:type schema:CreativeWork
    130 sg:pub.10.1007/s00604-018-2954-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106283641
    131 https://doi.org/10.1007/s00604-018-2954-8
    132 rdf:type schema:CreativeWork
    133 sg:pub.10.1007/s00604-018-2994-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107121613
    134 https://doi.org/10.1007/s00604-018-2994-0
    135 rdf:type schema:CreativeWork
    136 sg:pub.10.1007/s00604-018-3004-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107037527
    137 https://doi.org/10.1007/s00604-018-3004-2
    138 rdf:type schema:CreativeWork
    139 sg:pub.10.1038/srep24850 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028525822
    140 https://doi.org/10.1038/srep24850
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1002/1521-4109(200010)12:14<1130::aid-elan1130>3.0.co;2-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013436965
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1002/adma.200401756 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010335191
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1002/smll.200900291 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010255652
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1016/j.aca.2006.05.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041579224
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1016/j.aca.2015.07.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049358568
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1016/j.aca.2015.08.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008585102
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1016/j.aca.2017.07.047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090915016
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1016/j.bios.2014.12.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021503692
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1016/j.jelechem.2017.01.042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045226773
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1016/j.snb.2015.07.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006743883
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.1016/j.snb.2016.07.106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034030148
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.1016/j.talanta.2011.02.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038604586
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.1016/j.talanta.2014.04.092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046572837
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.1039/c0an00056f schema:sameAs https://app.dimensions.ai/details/publication/pub.1036435147
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.1039/c1ra00709b schema:sameAs https://app.dimensions.ai/details/publication/pub.1038263819
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.1039/c2an36112d schema:sameAs https://app.dimensions.ai/details/publication/pub.1022854479
    173 rdf:type schema:CreativeWork
    174 https://doi.org/10.1039/c2jm31191g schema:sameAs https://app.dimensions.ai/details/publication/pub.1049963600
    175 rdf:type schema:CreativeWork
    176 https://doi.org/10.1039/c2jm35501a schema:sameAs https://app.dimensions.ai/details/publication/pub.1033015342
    177 rdf:type schema:CreativeWork
    178 https://doi.org/10.1080/02772248.2015.1050201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050286556
    179 rdf:type schema:CreativeWork
    180 https://doi.org/10.3164/jcbn.15-105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012360397
    181 rdf:type schema:CreativeWork
    182 https://www.grid.ac/institutes/grid.442325.6 schema:alternateName University of Zululand
    183 schema:name Department of Chemistry, University of Zululand, Private Bag X1001, 3886, KwaDlangezwa, South Africa
    184 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...