Indirect amperometric sensing of dopamine using a redox-switchable naphthoquinone-terminated self-assembled monolayer on gold electrode View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-03

AUTHORS

Asma Hammami, Rihab Sahli, Noureddine Raouafi

ABSTRACT

We report on the design of a simple yet sensitive and selective electrode for amperometric determination of dopamine at a cathodic potential as low as −0.30 V vs. Ag/AgCl. The electrode was obtained by self-assembly of ω-mercaptopropyl naphthoquinone (NQ-SAM) on the surface of a polycrystalline gold electrode. The presence of dopamine induces an increase of the reduction current peak at −0.30 V corresponding to the reduction of naphthoquinone to hydronaphthoquinone. Dopamine and dopamine-quinone accumulate on the surface to form a 3D network linked by hydrogen bonds. Raman and infrared spectroscopy as well as atomic force microscopy confirmed the multilayer formation. The method allows dopamine to be indirectly detected at a working potential that is lower by 0.50 V than the standard oxidation potential at a bare gold electrode. The sensor shows distinct oxidation potentials for dopamine (120 mV), ascorbic acid (280 mV) and uric acid (520 mV) which makes the method fairly selective. The analytical range extends from 1 to 100 μM concentrations of dopamine, and the limits of detection and quantification are 0.040 and 0.134 μM, respectively. Graphical abstractThe self-assembly of naphthoquinone-terminated alkylthiol on gold electrode yields a sensitive sensor for dopamine detection at −0.30 V vs. Ag/AgCl, which is 0.5 V lower than the dopamine standard redox potential. It is able to discriminate dopamine in presence of interferents. The self-assembly of naphthoquinone-terminated alkylthiol on gold electrode yields a sensitive sensor for dopamine detection at −0.30 V vs. Ag/AgCl, which is 0.5 V lower than the dopamine standard redox potential. It is able to discriminate dopamine in presence of interferents. More... »

PAGES

1137-1144

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00604-015-1739-6

DOI

http://dx.doi.org/10.1007/s00604-015-1739-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1000961314


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Tunis El Manar University", 
          "id": "https://www.grid.ac/institutes/grid.12574.35", 
          "name": [
            "Universit\u00e9 de Tunis El-Manar, Facult\u00e9 des Sciences de Tunis, D\u00e9partement de Chimie, Laboratoire de Chimie Analytique & Electrochimie (LR99ES15), 2092, Tunis, El-Manar, Tunisia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hammami", 
        "givenName": "Asma", 
        "id": "sg:person.010433716525.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010433716525.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Laboratoire M\u00e9thodes et Techniques d\u2019Analyse, Institut National de Recherche et d\u2019Analyse Physico-Chimique (INRAP), BioTechPole Sidi Thabet, 2020, Ariana, Tunisia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sahli", 
        "givenName": "Rihab", 
        "id": "sg:person.0645657426.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0645657426.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tunis El Manar University", 
          "id": "https://www.grid.ac/institutes/grid.12574.35", 
          "name": [
            "Universit\u00e9 de Tunis El-Manar, Facult\u00e9 des Sciences de Tunis, D\u00e9partement de Chimie, Laboratoire de Chimie Analytique & Electrochimie (LR99ES15), 2092, Tunis, El-Manar, Tunisia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Raouafi", 
        "givenName": "Noureddine", 
        "id": "sg:person.011213267641.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011213267641.19"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0731-7085(98)00056-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004115172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c3cs60174a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004502347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1556-276x-6-185", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007508302", 
          "https://doi.org/10.1186/1556-276x-6-185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bios.2008.10.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008342086"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00604-010-0346-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013738830", 
          "https://doi.org/10.1007/s00604-010-0346-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00604-010-0346-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013738830", 
          "https://doi.org/10.1007/s00604-010-0346-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.electacta.2014.12.148", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013739231"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.electacta.2014.12.148", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013739231"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.talanta.2009.08.032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017569898"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/elan.201300345", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019901098"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-0728(79)80075-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023233653"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00604-015-1521-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026374002", 
          "https://doi.org/10.1007/s00604-015-1521-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.electacta.2014.05.086", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027297903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00604-013-1015-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028968943", 
          "https://doi.org/10.1007/s00604-013-1015-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bios.2013.09.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032594034"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00604-015-1455-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033624602", 
          "https://doi.org/10.1007/s00604-015-1455-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jelechem.2006.04.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038423687"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00604-014-1308-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039686318", 
          "https://doi.org/10.1007/s00604-014-1308-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00604-014-1308-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039686318", 
          "https://doi.org/10.1007/s00604-014-1308-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/elan.1140020303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040321471"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/elan.1140020303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040321471"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/elan.200704073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041253783"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0024-3205(98)00329-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043306265"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00604-014-1363-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049069657", 
          "https://doi.org/10.1007/s00604-014-1363-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0013-4686(02)00507-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049449244"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac00164a718", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054977285"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/j100012a029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055648955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp971481k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056125010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp971481k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056125010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1055/s-2008-1032186", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057528438"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1246/bcsj.69.2461", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064474516"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-03", 
    "datePublishedReg": "2016-03-01", 
    "description": "We report on the design of a simple yet sensitive and selective electrode for amperometric determination of dopamine at a cathodic potential as low as \u22120.30 V vs. Ag/AgCl. The electrode was obtained by self-assembly of \u03c9-mercaptopropyl naphthoquinone (NQ-SAM) on the surface of a polycrystalline gold electrode. The presence of dopamine induces an increase of the reduction current peak at \u22120.30 V corresponding to the reduction of naphthoquinone to hydronaphthoquinone. Dopamine and dopamine-quinone accumulate on the surface to form a 3D network linked by hydrogen bonds. Raman and infrared spectroscopy as well as atomic force microscopy confirmed the multilayer formation. The method allows dopamine to be indirectly detected at a working potential that is lower by 0.50 V than the standard oxidation potential at a bare gold electrode. The sensor shows distinct oxidation potentials for dopamine (120 mV), ascorbic acid (280 mV) and uric acid (520 mV) which makes the method fairly selective. The analytical range extends from 1 to 100 \u03bcM concentrations of dopamine, and the limits of detection and quantification are 0.040 and 0.134 \u03bcM, respectively. Graphical abstractThe self-assembly of naphthoquinone-terminated alkylthiol on gold electrode yields a sensitive sensor for dopamine detection at \u22120.30 V vs. Ag/AgCl, which is 0.5 V lower than the dopamine standard redox potential. It is able to discriminate dopamine in presence of interferents. The self-assembly of naphthoquinone-terminated alkylthiol on gold electrode yields a sensitive sensor for dopamine detection at \u22120.30 V vs. Ag/AgCl, which is 0.5 V lower than the dopamine standard redox potential. It is able to discriminate dopamine in presence of interferents.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00604-015-1739-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1009468", 
        "issn": [
          "0026-3672", 
          "1436-5073"
        ], 
        "name": "Microchimica Acta", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "183"
      }
    ], 
    "name": "Indirect amperometric sensing of dopamine using a redox-switchable naphthoquinone-terminated self-assembled monolayer on gold electrode", 
    "pagination": "1137-1144", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0494b35c29ec5f3ad47a6fc0d4fc4f219a0ea1da2b6d144bf62e442729e578b3"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00604-015-1739-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1000961314"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00604-015-1739-6", 
      "https://app.dimensions.ai/details/publication/pub.1000961314"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:33", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000479.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s00604-015-1739-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00604-015-1739-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00604-015-1739-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00604-015-1739-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00604-015-1739-6'


 

This table displays all metadata directly associated to this object as RDF triples.

162 TRIPLES      21 PREDICATES      53 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00604-015-1739-6 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N1366500c53764e64926c87fea08a755d
4 schema:citation sg:pub.10.1007/s00604-010-0346-9
5 sg:pub.10.1007/s00604-013-1015-6
6 sg:pub.10.1007/s00604-014-1308-4
7 sg:pub.10.1007/s00604-014-1363-x
8 sg:pub.10.1007/s00604-015-1455-2
9 sg:pub.10.1007/s00604-015-1521-9
10 sg:pub.10.1186/1556-276x-6-185
11 https://doi.org/10.1002/elan.1140020303
12 https://doi.org/10.1002/elan.200704073
13 https://doi.org/10.1002/elan.201300345
14 https://doi.org/10.1016/j.bios.2008.10.022
15 https://doi.org/10.1016/j.bios.2013.09.003
16 https://doi.org/10.1016/j.electacta.2014.05.086
17 https://doi.org/10.1016/j.electacta.2014.12.148
18 https://doi.org/10.1016/j.jelechem.2006.04.006
19 https://doi.org/10.1016/j.talanta.2009.08.032
20 https://doi.org/10.1016/s0013-4686(02)00507-8
21 https://doi.org/10.1016/s0022-0728(79)80075-3
22 https://doi.org/10.1016/s0024-3205(98)00329-4
23 https://doi.org/10.1016/s0731-7085(98)00056-9
24 https://doi.org/10.1021/ac00164a718
25 https://doi.org/10.1021/j100012a029
26 https://doi.org/10.1021/jp971481k
27 https://doi.org/10.1039/c3cs60174a
28 https://doi.org/10.1055/s-2008-1032186
29 https://doi.org/10.1246/bcsj.69.2461
30 schema:datePublished 2016-03
31 schema:datePublishedReg 2016-03-01
32 schema:description We report on the design of a simple yet sensitive and selective electrode for amperometric determination of dopamine at a cathodic potential as low as −0.30 V vs. Ag/AgCl. The electrode was obtained by self-assembly of ω-mercaptopropyl naphthoquinone (NQ-SAM) on the surface of a polycrystalline gold electrode. The presence of dopamine induces an increase of the reduction current peak at −0.30 V corresponding to the reduction of naphthoquinone to hydronaphthoquinone. Dopamine and dopamine-quinone accumulate on the surface to form a 3D network linked by hydrogen bonds. Raman and infrared spectroscopy as well as atomic force microscopy confirmed the multilayer formation. The method allows dopamine to be indirectly detected at a working potential that is lower by 0.50 V than the standard oxidation potential at a bare gold electrode. The sensor shows distinct oxidation potentials for dopamine (120 mV), ascorbic acid (280 mV) and uric acid (520 mV) which makes the method fairly selective. The analytical range extends from 1 to 100 μM concentrations of dopamine, and the limits of detection and quantification are 0.040 and 0.134 μM, respectively. Graphical abstractThe self-assembly of naphthoquinone-terminated alkylthiol on gold electrode yields a sensitive sensor for dopamine detection at −0.30 V vs. Ag/AgCl, which is 0.5 V lower than the dopamine standard redox potential. It is able to discriminate dopamine in presence of interferents. The self-assembly of naphthoquinone-terminated alkylthiol on gold electrode yields a sensitive sensor for dopamine detection at −0.30 V vs. Ag/AgCl, which is 0.5 V lower than the dopamine standard redox potential. It is able to discriminate dopamine in presence of interferents.
33 schema:genre research_article
34 schema:inLanguage en
35 schema:isAccessibleForFree false
36 schema:isPartOf N57ac1ef7ae3d499eb69e4fe0c3099d61
37 Nfaca15053b2549eca49e6752ab1908dd
38 sg:journal.1009468
39 schema:name Indirect amperometric sensing of dopamine using a redox-switchable naphthoquinone-terminated self-assembled monolayer on gold electrode
40 schema:pagination 1137-1144
41 schema:productId N0effcbf3c7fd432a94195036ad2237f7
42 N3257bfe544b34fba9cd52e8a4d1391d5
43 N570023fcc0f64f88a96b19c9e66eb06e
44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000961314
45 https://doi.org/10.1007/s00604-015-1739-6
46 schema:sdDatePublished 2019-04-10T16:33
47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
48 schema:sdPublisher N79c7f6c2ae3b4b25a74535f4eb200b83
49 schema:url http://link.springer.com/10.1007/s00604-015-1739-6
50 sgo:license sg:explorer/license/
51 sgo:sdDataset articles
52 rdf:type schema:ScholarlyArticle
53 N0effcbf3c7fd432a94195036ad2237f7 schema:name readcube_id
54 schema:value 0494b35c29ec5f3ad47a6fc0d4fc4f219a0ea1da2b6d144bf62e442729e578b3
55 rdf:type schema:PropertyValue
56 N1366500c53764e64926c87fea08a755d rdf:first sg:person.010433716525.37
57 rdf:rest Nd80f083d288e4b8b8a474b039087f1af
58 N3257bfe544b34fba9cd52e8a4d1391d5 schema:name dimensions_id
59 schema:value pub.1000961314
60 rdf:type schema:PropertyValue
61 N570023fcc0f64f88a96b19c9e66eb06e schema:name doi
62 schema:value 10.1007/s00604-015-1739-6
63 rdf:type schema:PropertyValue
64 N57ac1ef7ae3d499eb69e4fe0c3099d61 schema:volumeNumber 183
65 rdf:type schema:PublicationVolume
66 N79c7f6c2ae3b4b25a74535f4eb200b83 schema:name Springer Nature - SN SciGraph project
67 rdf:type schema:Organization
68 Nd80f083d288e4b8b8a474b039087f1af rdf:first sg:person.0645657426.13
69 rdf:rest Nde10a4b6fba5403bb51fae21ef1393c0
70 Nde10a4b6fba5403bb51fae21ef1393c0 rdf:first sg:person.011213267641.19
71 rdf:rest rdf:nil
72 Nf0810ce4a8454bc98ac4345448991893 schema:name Laboratoire Méthodes et Techniques d’Analyse, Institut National de Recherche et d’Analyse Physico-Chimique (INRAP), BioTechPole Sidi Thabet, 2020, Ariana, Tunisia
73 rdf:type schema:Organization
74 Nfaca15053b2549eca49e6752ab1908dd schema:issueNumber 3
75 rdf:type schema:PublicationIssue
76 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
77 schema:name Chemical Sciences
78 rdf:type schema:DefinedTerm
79 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
80 schema:name Physical Chemistry (incl. Structural)
81 rdf:type schema:DefinedTerm
82 sg:journal.1009468 schema:issn 0026-3672
83 1436-5073
84 schema:name Microchimica Acta
85 rdf:type schema:Periodical
86 sg:person.010433716525.37 schema:affiliation https://www.grid.ac/institutes/grid.12574.35
87 schema:familyName Hammami
88 schema:givenName Asma
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010433716525.37
90 rdf:type schema:Person
91 sg:person.011213267641.19 schema:affiliation https://www.grid.ac/institutes/grid.12574.35
92 schema:familyName Raouafi
93 schema:givenName Noureddine
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011213267641.19
95 rdf:type schema:Person
96 sg:person.0645657426.13 schema:affiliation Nf0810ce4a8454bc98ac4345448991893
97 schema:familyName Sahli
98 schema:givenName Rihab
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0645657426.13
100 rdf:type schema:Person
101 sg:pub.10.1007/s00604-010-0346-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013738830
102 https://doi.org/10.1007/s00604-010-0346-9
103 rdf:type schema:CreativeWork
104 sg:pub.10.1007/s00604-013-1015-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028968943
105 https://doi.org/10.1007/s00604-013-1015-6
106 rdf:type schema:CreativeWork
107 sg:pub.10.1007/s00604-014-1308-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039686318
108 https://doi.org/10.1007/s00604-014-1308-4
109 rdf:type schema:CreativeWork
110 sg:pub.10.1007/s00604-014-1363-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1049069657
111 https://doi.org/10.1007/s00604-014-1363-x
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/s00604-015-1455-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033624602
114 https://doi.org/10.1007/s00604-015-1455-2
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/s00604-015-1521-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026374002
117 https://doi.org/10.1007/s00604-015-1521-9
118 rdf:type schema:CreativeWork
119 sg:pub.10.1186/1556-276x-6-185 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007508302
120 https://doi.org/10.1186/1556-276x-6-185
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1002/elan.1140020303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040321471
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1002/elan.200704073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041253783
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1002/elan.201300345 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019901098
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/j.bios.2008.10.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008342086
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.bios.2013.09.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032594034
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.electacta.2014.05.086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027297903
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.electacta.2014.12.148 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013739231
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.jelechem.2006.04.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038423687
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.talanta.2009.08.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017569898
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/s0013-4686(02)00507-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049449244
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/s0022-0728(79)80075-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023233653
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/s0024-3205(98)00329-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043306265
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/s0731-7085(98)00056-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004115172
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1021/ac00164a718 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054977285
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1021/j100012a029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055648955
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1021/jp971481k schema:sameAs https://app.dimensions.ai/details/publication/pub.1056125010
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1039/c3cs60174a schema:sameAs https://app.dimensions.ai/details/publication/pub.1004502347
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1055/s-2008-1032186 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057528438
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1246/bcsj.69.2461 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064474516
159 rdf:type schema:CreativeWork
160 https://www.grid.ac/institutes/grid.12574.35 schema:alternateName Tunis El Manar University
161 schema:name Université de Tunis El-Manar, Faculté des Sciences de Tunis, Département de Chimie, Laboratoire de Chimie Analytique & Electrochimie (LR99ES15), 2092, Tunis, El-Manar, Tunisia
162 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...