Initiation and Evolution of a Network of Deformation Bands in a Rock Analogue Material at Brittle–Ductile Transition View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-11-07

AUTHORS

Thi-Phuong-Huyen Tran, Stéphane Bouissou, Alexandre Chemenda, Julien Ambre, Pierre Vacher, Patrick Michel

ABSTRACT

We investigate the deformation localization at brittle–ductile transition in axisymmetric compression tests of rock analogue material GRAM1 made of bonded rigid particles. This transition in rocks (as well as in GRAM1) is recognized by the formation of a network of conjugate deformation localization bands in the postmortem rock samples and by a shallow stress reduction followed by a stress plateau in stress–strain curves. GRAM1 is much weaker than hard rocks. Therefore, brittle–ductile transition occurs in GRAM1 at a low confining pressure, 0.3 MPa, which is much smaller than that for real rocks. This allows using a transparent pressure cell and applying the digital image correlation technique to visualize the deformation evolution. Taking advantage of this technique and of the detailed characterization of GRAM1’s constitutive properties in the previous studies, we show that the initiation of deformation localization bands occurs in the dilatant (positive dilatancy factor β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta$$\end{document}) and strain-softening (negative hardening modulus h\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h$$\end{document}) deformation regime. During the band evolution, the deformation within it becomes compactive (β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta$$\end{document} < 0) and is accompanied by the material hardening (h\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h$$\end{document} > 0), which causes the band to widen and new bands to form successively resulting in a progressively densified band network. The formation of a conjugate band network at brittle–ductile transition is thus due to the transition from dilatancy to compaction and from softening to hardening during the inelastic straining. More... »

PAGES

737-752

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00603-018-1641-8

DOI

http://dx.doi.org/10.1007/s00603-018-1641-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1109759647


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0905", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Civil Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0914", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Resources Engineering and Extractive Metallurgy", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Universit\u00e9 C\u00f4te d\u2019Azur, CNRS, Observatoire de la C\u00f4te d\u2019Azur, IRD, G\u00e9oazur, 250 rue Albert Einstein, Sophia Antipolis, 06560, Valbonne, France", 
          "id": "http://www.grid.ac/institutes/grid.464167.6", 
          "name": [
            "Universit\u00e9 C\u00f4te d\u2019Azur, CNRS, Observatoire de la C\u00f4te d\u2019Azur, IRD, G\u00e9oazur, 250 rue Albert Einstein, Sophia Antipolis, 06560, Valbonne, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tran", 
        "givenName": "Thi-Phuong-Huyen", 
        "id": "sg:person.010624025360.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010624025360.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universit\u00e9 C\u00f4te d\u2019Azur, CNRS, Observatoire de la C\u00f4te d\u2019Azur, IRD, G\u00e9oazur, 250 rue Albert Einstein, Sophia Antipolis, 06560, Valbonne, France", 
          "id": "http://www.grid.ac/institutes/grid.464167.6", 
          "name": [
            "Universit\u00e9 C\u00f4te d\u2019Azur, CNRS, Observatoire de la C\u00f4te d\u2019Azur, IRD, G\u00e9oazur, 250 rue Albert Einstein, Sophia Antipolis, 06560, Valbonne, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bouissou", 
        "givenName": "St\u00e9phane", 
        "id": "sg:person.013055152362.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013055152362.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universit\u00e9 C\u00f4te d\u2019Azur, CNRS, Observatoire de la C\u00f4te d\u2019Azur, IRD, G\u00e9oazur, 250 rue Albert Einstein, Sophia Antipolis, 06560, Valbonne, France", 
          "id": "http://www.grid.ac/institutes/grid.464167.6", 
          "name": [
            "Universit\u00e9 C\u00f4te d\u2019Azur, CNRS, Observatoire de la C\u00f4te d\u2019Azur, IRD, G\u00e9oazur, 250 rue Albert Einstein, Sophia Antipolis, 06560, Valbonne, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chemenda", 
        "givenName": "Alexandre", 
        "id": "sg:person.016652470514.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016652470514.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universit\u00e9 C\u00f4te d\u2019Azur, CNRS, Observatoire de la C\u00f4te d\u2019Azur, IRD, G\u00e9oazur, 250 rue Albert Einstein, Sophia Antipolis, 06560, Valbonne, France", 
          "id": "http://www.grid.ac/institutes/grid.464167.6", 
          "name": [
            "Universit\u00e9 C\u00f4te d\u2019Azur, CNRS, Observatoire de la C\u00f4te d\u2019Azur, IRD, G\u00e9oazur, 250 rue Albert Einstein, Sophia Antipolis, 06560, Valbonne, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ambre", 
        "givenName": "Julien", 
        "id": "sg:person.014315256127.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014315256127.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire SYMME, Universit\u00e9 de Savoie Mont Blanc, 74944, Annecy, France", 
          "id": "http://www.grid.ac/institutes/grid.5388.6", 
          "name": [
            "Laboratoire SYMME, Universit\u00e9 de Savoie Mont Blanc, 74944, Annecy, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vacher", 
        "givenName": "Pierre", 
        "id": "sg:person.010647634133.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010647634133.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire Lagrange, Universit\u00e9 C\u00f4te d\u2019Azur, CNRS, Observatoire de la C\u00f4te d\u2019Azur, 06304, Nice, France", 
          "id": "http://www.grid.ac/institutes/grid.462572.0", 
          "name": [
            "Laboratoire Lagrange, Universit\u00e9 C\u00f4te d\u2019Azur, CNRS, Observatoire de la C\u00f4te d\u2019Azur, 06304, Nice, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Michel", 
        "givenName": "Patrick", 
        "id": "sg:person.014600122327.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014600122327.15"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2018-11-07", 
    "datePublishedReg": "2018-11-07", 
    "description": "We investigate the deformation localization at brittle\u2013ductile transition in axisymmetric compression tests of rock analogue material GRAM1 made of bonded rigid particles. This transition in rocks (as well as in GRAM1) is recognized by the formation of a network of conjugate deformation localization bands in the postmortem rock samples and by a shallow stress reduction followed by a stress plateau in stress\u2013strain curves. GRAM1 is much weaker than hard rocks. Therefore, brittle\u2013ductile transition occurs in GRAM1 at a low confining pressure, 0.3\u00a0MPa, which is much smaller than that for real rocks. This allows using a transparent pressure cell and applying the digital image correlation technique to visualize the deformation evolution. Taking advantage of this technique and of the detailed characterization of GRAM1\u2019s constitutive properties in the previous studies, we show that the initiation of deformation localization bands occurs in the dilatant (positive dilatancy factor \u03b2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\beta$$\\end{document}) and strain-softening (negative hardening modulus h\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$h$$\\end{document}) deformation regime. During the band evolution, the deformation within it becomes compactive (\u03b2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\beta$$\\end{document}\u2009<\u20090) and is accompanied by the material hardening (h\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$h$$\\end{document}\u2009>\u20090), which causes the band to widen and new bands to form successively resulting in a progressively densified band network. The formation of a conjugate band network at brittle\u2013ductile transition is thus due to the transition from dilatancy to compaction and from softening to hardening during the inelastic straining.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00603-018-1641-8", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1052698", 
        "issn": [
          "0723-2632", 
          "1434-453X"
        ], 
        "name": "Rock Mechanics and Rock Engineering", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "52"
      }
    ], 
    "keywords": [
      "brittle-ductile transition", 
      "deformation localization bands", 
      "localization bands", 
      "digital image correlation technique", 
      "constitutive properties", 
      "transparent pressure cell", 
      "stress-strain curves", 
      "image correlation technique", 
      "rock analogue materials", 
      "axisymmetric compression tests", 
      "low confining pressure", 
      "inelastic straining", 
      "material hardening", 
      "deformation localization", 
      "compression tests", 
      "deformation evolution", 
      "rigid particles", 
      "confining pressure", 
      "deformation bands", 
      "stress plateau", 
      "deformation regime", 
      "hard rock", 
      "real rocks", 
      "analogue materials", 
      "band evolution", 
      "correlation technique", 
      "pressure cell", 
      "rock samples", 
      "hardening", 
      "MPa", 
      "dilatancy", 
      "stress reduction", 
      "deformation", 
      "detailed characterization", 
      "straining", 
      "compaction", 
      "particles", 
      "materials", 
      "rocks", 
      "technique", 
      "properties", 
      "band", 
      "transition", 
      "formation", 
      "network", 
      "pressure", 
      "evolution", 
      "band networks", 
      "characterization", 
      "regime", 
      "advantages", 
      "test", 
      "curves", 
      "reduction", 
      "initiation", 
      "samples", 
      "previous studies", 
      "plateau", 
      "study", 
      "new bands", 
      "localization", 
      "cells", 
      "rock analogue material GRAM1", 
      "analogue material GRAM1", 
      "material GRAM1", 
      "GRAM1", 
      "postmortem rock samples", 
      "shallow stress reduction", 
      "GRAM1\u2019s constitutive properties", 
      "conjugate band network"
    ], 
    "name": "Initiation and Evolution of a Network of Deformation Bands in a Rock Analogue Material at Brittle\u2013Ductile Transition", 
    "pagination": "737-752", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1109759647"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00603-018-1641-8"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00603-018-1641-8", 
      "https://app.dimensions.ai/details/publication/pub.1109759647"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_775.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00603-018-1641-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00603-018-1641-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00603-018-1641-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00603-018-1641-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00603-018-1641-8'


 

This table displays all metadata directly associated to this object as RDF triples.

173 TRIPLES      21 PREDICATES      96 URIs      87 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00603-018-1641-8 schema:about anzsrc-for:09
2 anzsrc-for:0905
3 anzsrc-for:0914
4 schema:author Nc0e2eacb841e4bce878e3a4ad14afdb0
5 schema:datePublished 2018-11-07
6 schema:datePublishedReg 2018-11-07
7 schema:description We investigate the deformation localization at brittle–ductile transition in axisymmetric compression tests of rock analogue material GRAM1 made of bonded rigid particles. This transition in rocks (as well as in GRAM1) is recognized by the formation of a network of conjugate deformation localization bands in the postmortem rock samples and by a shallow stress reduction followed by a stress plateau in stress–strain curves. GRAM1 is much weaker than hard rocks. Therefore, brittle–ductile transition occurs in GRAM1 at a low confining pressure, 0.3 MPa, which is much smaller than that for real rocks. This allows using a transparent pressure cell and applying the digital image correlation technique to visualize the deformation evolution. Taking advantage of this technique and of the detailed characterization of GRAM1’s constitutive properties in the previous studies, we show that the initiation of deformation localization bands occurs in the dilatant (positive dilatancy factor β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta$$\end{document}) and strain-softening (negative hardening modulus h\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h$$\end{document}) deformation regime. During the band evolution, the deformation within it becomes compactive (β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta$$\end{document} < 0) and is accompanied by the material hardening (h\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h$$\end{document} > 0), which causes the band to widen and new bands to form successively resulting in a progressively densified band network. The formation of a conjugate band network at brittle–ductile transition is thus due to the transition from dilatancy to compaction and from softening to hardening during the inelastic straining.
8 schema:genre article
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N34a74d80362a493b84840f753a0190e7
12 N77ed6a13b32e4b1e90c81584c2518822
13 sg:journal.1052698
14 schema:keywords GRAM1
15 GRAM1’s constitutive properties
16 MPa
17 advantages
18 analogue material GRAM1
19 analogue materials
20 axisymmetric compression tests
21 band
22 band evolution
23 band networks
24 brittle-ductile transition
25 cells
26 characterization
27 compaction
28 compression tests
29 confining pressure
30 conjugate band network
31 constitutive properties
32 correlation technique
33 curves
34 deformation
35 deformation bands
36 deformation evolution
37 deformation localization
38 deformation localization bands
39 deformation regime
40 detailed characterization
41 digital image correlation technique
42 dilatancy
43 evolution
44 formation
45 hard rock
46 hardening
47 image correlation technique
48 inelastic straining
49 initiation
50 localization
51 localization bands
52 low confining pressure
53 material GRAM1
54 material hardening
55 materials
56 network
57 new bands
58 particles
59 plateau
60 postmortem rock samples
61 pressure
62 pressure cell
63 previous studies
64 properties
65 real rocks
66 reduction
67 regime
68 rigid particles
69 rock analogue material GRAM1
70 rock analogue materials
71 rock samples
72 rocks
73 samples
74 shallow stress reduction
75 straining
76 stress plateau
77 stress reduction
78 stress-strain curves
79 study
80 technique
81 test
82 transition
83 transparent pressure cell
84 schema:name Initiation and Evolution of a Network of Deformation Bands in a Rock Analogue Material at Brittle–Ductile Transition
85 schema:pagination 737-752
86 schema:productId N64790bb3453a4c21940ff660aeb6e1e5
87 Nfb732252d2514bbc828c5396d9299f1d
88 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109759647
89 https://doi.org/10.1007/s00603-018-1641-8
90 schema:sdDatePublished 2021-11-01T18:32
91 schema:sdLicense https://scigraph.springernature.com/explorer/license/
92 schema:sdPublisher N32008bb65ecd4c53b6e6a13d4d384a81
93 schema:url https://doi.org/10.1007/s00603-018-1641-8
94 sgo:license sg:explorer/license/
95 sgo:sdDataset articles
96 rdf:type schema:ScholarlyArticle
97 N32008bb65ecd4c53b6e6a13d4d384a81 schema:name Springer Nature - SN SciGraph project
98 rdf:type schema:Organization
99 N34a74d80362a493b84840f753a0190e7 schema:volumeNumber 52
100 rdf:type schema:PublicationVolume
101 N53cd812052f84489a0b6d9ca5bf0cdc2 rdf:first sg:person.014315256127.10
102 rdf:rest Nbff1400b732b406aa9a2d8c3b551e9d5
103 N64790bb3453a4c21940ff660aeb6e1e5 schema:name doi
104 schema:value 10.1007/s00603-018-1641-8
105 rdf:type schema:PropertyValue
106 N77ed6a13b32e4b1e90c81584c2518822 schema:issueNumber 3
107 rdf:type schema:PublicationIssue
108 N895018813ff64ffab054b027610747fe rdf:first sg:person.013055152362.41
109 rdf:rest N9a4fe9f6dfdc415191a59d51d713e130
110 N9a4fe9f6dfdc415191a59d51d713e130 rdf:first sg:person.016652470514.48
111 rdf:rest N53cd812052f84489a0b6d9ca5bf0cdc2
112 Nab2e0a895e534d68ba78f899f507c435 rdf:first sg:person.014600122327.15
113 rdf:rest rdf:nil
114 Nbff1400b732b406aa9a2d8c3b551e9d5 rdf:first sg:person.010647634133.23
115 rdf:rest Nab2e0a895e534d68ba78f899f507c435
116 Nc0e2eacb841e4bce878e3a4ad14afdb0 rdf:first sg:person.010624025360.10
117 rdf:rest N895018813ff64ffab054b027610747fe
118 Nfb732252d2514bbc828c5396d9299f1d schema:name dimensions_id
119 schema:value pub.1109759647
120 rdf:type schema:PropertyValue
121 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
122 schema:name Engineering
123 rdf:type schema:DefinedTerm
124 anzsrc-for:0905 schema:inDefinedTermSet anzsrc-for:
125 schema:name Civil Engineering
126 rdf:type schema:DefinedTerm
127 anzsrc-for:0914 schema:inDefinedTermSet anzsrc-for:
128 schema:name Resources Engineering and Extractive Metallurgy
129 rdf:type schema:DefinedTerm
130 sg:journal.1052698 schema:issn 0723-2632
131 1434-453X
132 schema:name Rock Mechanics and Rock Engineering
133 schema:publisher Springer Nature
134 rdf:type schema:Periodical
135 sg:person.010624025360.10 schema:affiliation grid-institutes:grid.464167.6
136 schema:familyName Tran
137 schema:givenName Thi-Phuong-Huyen
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010624025360.10
139 rdf:type schema:Person
140 sg:person.010647634133.23 schema:affiliation grid-institutes:grid.5388.6
141 schema:familyName Vacher
142 schema:givenName Pierre
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010647634133.23
144 rdf:type schema:Person
145 sg:person.013055152362.41 schema:affiliation grid-institutes:grid.464167.6
146 schema:familyName Bouissou
147 schema:givenName Stéphane
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013055152362.41
149 rdf:type schema:Person
150 sg:person.014315256127.10 schema:affiliation grid-institutes:grid.464167.6
151 schema:familyName Ambre
152 schema:givenName Julien
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014315256127.10
154 rdf:type schema:Person
155 sg:person.014600122327.15 schema:affiliation grid-institutes:grid.462572.0
156 schema:familyName Michel
157 schema:givenName Patrick
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014600122327.15
159 rdf:type schema:Person
160 sg:person.016652470514.48 schema:affiliation grid-institutes:grid.464167.6
161 schema:familyName Chemenda
162 schema:givenName Alexandre
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016652470514.48
164 rdf:type schema:Person
165 grid-institutes:grid.462572.0 schema:alternateName Laboratoire Lagrange, Université Côte d’Azur, CNRS, Observatoire de la Côte d’Azur, 06304, Nice, France
166 schema:name Laboratoire Lagrange, Université Côte d’Azur, CNRS, Observatoire de la Côte d’Azur, 06304, Nice, France
167 rdf:type schema:Organization
168 grid-institutes:grid.464167.6 schema:alternateName Université Côte d’Azur, CNRS, Observatoire de la Côte d’Azur, IRD, Géoazur, 250 rue Albert Einstein, Sophia Antipolis, 06560, Valbonne, France
169 schema:name Université Côte d’Azur, CNRS, Observatoire de la Côte d’Azur, IRD, Géoazur, 250 rue Albert Einstein, Sophia Antipolis, 06560, Valbonne, France
170 rdf:type schema:Organization
171 grid-institutes:grid.5388.6 schema:alternateName Laboratoire SYMME, Université de Savoie Mont Blanc, 74944, Annecy, France
172 schema:name Laboratoire SYMME, Université de Savoie Mont Blanc, 74944, Annecy, France
173 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...