Ontology type: schema:ScholarlyArticle
2017-01-19
AUTHORS ABSTRACTThe instant form and the front form of relativistic dynamics proposed by Dirac (Rev Mod Phys 21:392–399, 1949) can be linked by introducing an interpolating angle. The instant form dynamics (IFD) provides a traditional approach evolved from non-relativistic dynamics and makes a close contact with Euclidean space developing temperature-dependent quantum field theory, lattice QCD, etc. The front form dynamics, now known as the light-front dynamics (LFD), however, works strictly in Minkowski space and provides useful frameworks to study deep inelastic scattering, parton distribution functions, deeply virtual Compton scattering, generalized parton distributions, etc. We present the recent development of the interpolation between IFD and LFD and discuss ramifications from this development. More... »
PAGES42
http://scigraph.springernature.com/pub.10.1007/s00601-016-1209-7
DOIhttp://dx.doi.org/10.1007/s00601-016-1209-7
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1003073444
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Physics, North Carolina State University, Box 8202, 27695-8202, Raleigh, NC, USA",
"id": "http://www.grid.ac/institutes/grid.40803.3f",
"name": [
"Department of Physics, North Carolina State University, Box 8202, 27695-8202, Raleigh, NC, USA"
],
"type": "Organization"
},
"familyName": "Ji",
"givenName": "Chueng-Ryong",
"id": "sg:person.0621263742.60",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621263742.60"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/bf01573728",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1015317069",
"https://doi.org/10.1007/bf01573728"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1140/epjc/s10052-010-1369-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1022082138",
"https://doi.org/10.1140/epjc/s10052-010-1369-4"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01550244",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1004098555",
"https://doi.org/10.1007/bf01550244"
],
"type": "CreativeWork"
}
],
"datePublished": "2017-01-19",
"datePublishedReg": "2017-01-19",
"description": "The instant form and the front form of relativistic dynamics proposed by Dirac (Rev Mod Phys 21:392\u2013399, 1949) can be linked by introducing an interpolating angle. The instant form dynamics (IFD) provides a traditional approach evolved from non-relativistic dynamics and makes a close contact with Euclidean space developing temperature-dependent quantum field theory, lattice QCD, etc. The front form dynamics, now known as the light-front dynamics (LFD), however, works strictly in Minkowski space and provides useful frameworks to study deep inelastic scattering, parton distribution functions, deeply virtual Compton scattering, generalized parton distributions, etc. We present the recent development of the interpolation between IFD and LFD and discuss ramifications from this development.",
"genre": "article",
"id": "sg:pub.10.1007/s00601-016-1209-7",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1136823",
"issn": [
"0177-7963",
"1432-5411"
],
"name": "Few-Body Systems",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "2",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "58"
}
],
"keywords": [
"instant form dynamics",
"light-front dynamics",
"relativistic dynamics",
"instant form",
"quantum field theory",
"front forms",
"form dynamics",
"front-form dynamics",
"non-relativistic dynamics",
"deep inelastic scattering",
"parton distribution functions",
"inelastic scattering",
"field theory",
"Minkowski space",
"lattice QCD",
"virtual Compton",
"parton distributions",
"Euclidean space",
"distribution function",
"dynamics",
"Compton",
"interpolation",
"Dirac",
"scattering",
"space",
"QCD",
"traditional approaches",
"recent developments",
"theory",
"angle",
"form",
"distribution",
"framework",
"approach",
"function",
"useful framework",
"contact",
"close contact",
"ramifications",
"development"
],
"name": "Interpolation Between the Instant Form and the Front Form of Relativistic Dynamics",
"pagination": "42",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1003073444"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s00601-016-1209-7"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s00601-016-1209-7",
"https://app.dimensions.ai/details/publication/pub.1003073444"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-10T10:18",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_723.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s00601-016-1209-7"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00601-016-1209-7'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00601-016-1209-7'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00601-016-1209-7'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00601-016-1209-7'
This table displays all metadata directly associated to this object as RDF triples.
110 TRIPLES
22 PREDICATES
68 URIs
57 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s00601-016-1209-7 | schema:about | anzsrc-for:01 |
2 | ″ | ″ | anzsrc-for:0101 |
3 | ″ | schema:author | N999a85e342834b3e99b9708dbc4d7948 |
4 | ″ | schema:citation | sg:pub.10.1007/bf01550244 |
5 | ″ | ″ | sg:pub.10.1007/bf01573728 |
6 | ″ | ″ | sg:pub.10.1140/epjc/s10052-010-1369-4 |
7 | ″ | schema:datePublished | 2017-01-19 |
8 | ″ | schema:datePublishedReg | 2017-01-19 |
9 | ″ | schema:description | The instant form and the front form of relativistic dynamics proposed by Dirac (Rev Mod Phys 21:392–399, 1949) can be linked by introducing an interpolating angle. The instant form dynamics (IFD) provides a traditional approach evolved from non-relativistic dynamics and makes a close contact with Euclidean space developing temperature-dependent quantum field theory, lattice QCD, etc. The front form dynamics, now known as the light-front dynamics (LFD), however, works strictly in Minkowski space and provides useful frameworks to study deep inelastic scattering, parton distribution functions, deeply virtual Compton scattering, generalized parton distributions, etc. We present the recent development of the interpolation between IFD and LFD and discuss ramifications from this development. |
10 | ″ | schema:genre | article |
11 | ″ | schema:inLanguage | en |
12 | ″ | schema:isAccessibleForFree | false |
13 | ″ | schema:isPartOf | N241f4bd97e384f74a756f1ea49ed0a38 |
14 | ″ | ″ | Na4272f50997148de8cb9b7d789d61bee |
15 | ″ | ″ | sg:journal.1136823 |
16 | ″ | schema:keywords | Compton |
17 | ″ | ″ | Dirac |
18 | ″ | ″ | Euclidean space |
19 | ″ | ″ | Minkowski space |
20 | ″ | ″ | QCD |
21 | ″ | ″ | angle |
22 | ″ | ″ | approach |
23 | ″ | ″ | close contact |
24 | ″ | ″ | contact |
25 | ″ | ″ | deep inelastic scattering |
26 | ″ | ″ | development |
27 | ″ | ″ | distribution |
28 | ″ | ″ | distribution function |
29 | ″ | ″ | dynamics |
30 | ″ | ″ | field theory |
31 | ″ | ″ | form |
32 | ″ | ″ | form dynamics |
33 | ″ | ″ | framework |
34 | ″ | ″ | front forms |
35 | ″ | ″ | front-form dynamics |
36 | ″ | ″ | function |
37 | ″ | ″ | inelastic scattering |
38 | ″ | ″ | instant form |
39 | ″ | ″ | instant form dynamics |
40 | ″ | ″ | interpolation |
41 | ″ | ″ | lattice QCD |
42 | ″ | ″ | light-front dynamics |
43 | ″ | ″ | non-relativistic dynamics |
44 | ″ | ″ | parton distribution functions |
45 | ″ | ″ | parton distributions |
46 | ″ | ″ | quantum field theory |
47 | ″ | ″ | ramifications |
48 | ″ | ″ | recent developments |
49 | ″ | ″ | relativistic dynamics |
50 | ″ | ″ | scattering |
51 | ″ | ″ | space |
52 | ″ | ″ | theory |
53 | ″ | ″ | traditional approaches |
54 | ″ | ″ | useful framework |
55 | ″ | ″ | virtual Compton |
56 | ″ | schema:name | Interpolation Between the Instant Form and the Front Form of Relativistic Dynamics |
57 | ″ | schema:pagination | 42 |
58 | ″ | schema:productId | N1b672d37b082455d9dbc3c7bf2522f4c |
59 | ″ | ″ | N3cf81734900f4e81ab624c6a2e3a2c25 |
60 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1003073444 |
61 | ″ | ″ | https://doi.org/10.1007/s00601-016-1209-7 |
62 | ″ | schema:sdDatePublished | 2022-05-10T10:18 |
63 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
64 | ″ | schema:sdPublisher | N923520079e034cbe8a44fdfbebf026ae |
65 | ″ | schema:url | https://doi.org/10.1007/s00601-016-1209-7 |
66 | ″ | sgo:license | sg:explorer/license/ |
67 | ″ | sgo:sdDataset | articles |
68 | ″ | rdf:type | schema:ScholarlyArticle |
69 | N1b672d37b082455d9dbc3c7bf2522f4c | schema:name | doi |
70 | ″ | schema:value | 10.1007/s00601-016-1209-7 |
71 | ″ | rdf:type | schema:PropertyValue |
72 | N241f4bd97e384f74a756f1ea49ed0a38 | schema:issueNumber | 2 |
73 | ″ | rdf:type | schema:PublicationIssue |
74 | N3cf81734900f4e81ab624c6a2e3a2c25 | schema:name | dimensions_id |
75 | ″ | schema:value | pub.1003073444 |
76 | ″ | rdf:type | schema:PropertyValue |
77 | N923520079e034cbe8a44fdfbebf026ae | schema:name | Springer Nature - SN SciGraph project |
78 | ″ | rdf:type | schema:Organization |
79 | N999a85e342834b3e99b9708dbc4d7948 | rdf:first | sg:person.0621263742.60 |
80 | ″ | rdf:rest | rdf:nil |
81 | Na4272f50997148de8cb9b7d789d61bee | schema:volumeNumber | 58 |
82 | ″ | rdf:type | schema:PublicationVolume |
83 | anzsrc-for:01 | schema:inDefinedTermSet | anzsrc-for: |
84 | ″ | schema:name | Mathematical Sciences |
85 | ″ | rdf:type | schema:DefinedTerm |
86 | anzsrc-for:0101 | schema:inDefinedTermSet | anzsrc-for: |
87 | ″ | schema:name | Pure Mathematics |
88 | ″ | rdf:type | schema:DefinedTerm |
89 | sg:journal.1136823 | schema:issn | 0177-7963 |
90 | ″ | ″ | 1432-5411 |
91 | ″ | schema:name | Few-Body Systems |
92 | ″ | schema:publisher | Springer Nature |
93 | ″ | rdf:type | schema:Periodical |
94 | sg:person.0621263742.60 | schema:affiliation | grid-institutes:grid.40803.3f |
95 | ″ | schema:familyName | Ji |
96 | ″ | schema:givenName | Chueng-Ryong |
97 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621263742.60 |
98 | ″ | rdf:type | schema:Person |
99 | sg:pub.10.1007/bf01550244 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1004098555 |
100 | ″ | ″ | https://doi.org/10.1007/bf01550244 |
101 | ″ | rdf:type | schema:CreativeWork |
102 | sg:pub.10.1007/bf01573728 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1015317069 |
103 | ″ | ″ | https://doi.org/10.1007/bf01573728 |
104 | ″ | rdf:type | schema:CreativeWork |
105 | sg:pub.10.1140/epjc/s10052-010-1369-4 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1022082138 |
106 | ″ | ″ | https://doi.org/10.1140/epjc/s10052-010-1369-4 |
107 | ″ | rdf:type | schema:CreativeWork |
108 | grid-institutes:grid.40803.3f | schema:alternateName | Department of Physics, North Carolina State University, Box 8202, 27695-8202, Raleigh, NC, USA |
109 | ″ | schema:name | Department of Physics, North Carolina State University, Box 8202, 27695-8202, Raleigh, NC, USA |
110 | ″ | rdf:type | schema:Organization |