Differences Between a Single- and a Double-Folding Nucleus-9Be Optical Potential View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-03-22

AUTHORS

A. Bonaccorso, F. Carstoiu, R. J. Charity, R. Kumar, G. Salvioni

ABSTRACT

We have recently constructed two very successful n-9\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^9$$\end{document}Be optical potentials (Bonaccorso and Charity in Phys Rev C89:024619, 2014). One by the Dispersive Optical Model (DOM) method and the other (AB) fully phenomenological. The two potentials have strong surface terms in common for both the real and the imaginary parts. This feature makes them particularly suitable to build a single-folded (light-) nucleus-9\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^9$$\end{document}Be optical potential by using ab-initio projectile densities such as those obtained with the VMC method (Wiringa http://www.phy.anl.gov/theory/research/density/). On the other hand, a VMC density together with experimental nucleon–nucleon cross-sections can be used also to obtain a neutron and/or proton-9\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^9$$\end{document}Be imaginary folding potential. We will use here an ab-initio VMC density (Wiringa http://www.phy.anl.gov/theory/research/density/) to obtain both a n-9\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^9$$\end{document}Be single-folded potential and a nucleus-nucleus double-folded potential. In this work we report on the cases of 8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^8$$\end{document}B, 8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^8$$\end{document}Li and 8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^8$$\end{document}C projectiles. Our approach could be the basis for a systematic study of optical potentials for light exotic nuclei scattering on such light targets. Some of the projectiles studied are cores of other exotic nuclei for which neutron knockout has been used to extract spectroscopic information. For those cases, our study will serve to make a quantitative assessment of the core-target part of the reaction description, in particular its localization. More... »

PAGES

331-336

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00601-016-1082-4

DOI

http://dx.doi.org/10.1007/s00601-016-1082-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1029001785


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "INFN, Sez. di Pisa, Largo B. Pontecorvo 3, 56127, Pisa, Italy", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "INFN, Sez. di Pisa, Largo B. Pontecorvo 3, 56127, Pisa, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bonaccorso", 
        "givenName": "A.", 
        "id": "sg:person.015715655423.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015715655423.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Atomic Physics, P.O. Box MG-6, Bucharest, Romania", 
          "id": "http://www.grid.ac/institutes/grid.425264.3", 
          "name": [
            "Institute of Atomic Physics, P.O. Box MG-6, Bucharest, Romania"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Carstoiu", 
        "givenName": "F.", 
        "id": "sg:person.013220151476.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013220151476.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Chemistry, Washington University, 63130, St. Louis, MO, USA", 
          "id": "http://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "Department of Chemistry, Washington University, 63130, St. Louis, MO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Charity", 
        "givenName": "R. J.", 
        "id": "sg:person.012731557245.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012731557245.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, Deenbandhu Chhoturam University of Science and Technology, Murthal, 131039, Sonepat, Haryana, India", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Physics, Deenbandhu Chhoturam University of Science and Technology, Murthal, 131039, Sonepat, Haryana, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kumar", 
        "givenName": "R.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, University of Jyvaskyla, P.O. Box 35 (YFL), FI-40014, Jyvaskyla, Finland", 
          "id": "http://www.grid.ac/institutes/grid.9681.6", 
          "name": [
            "Dipartimento di Fisica, Universit\u00e0 di Pisa, Largo B. Pontecorvo 3, 56127, Pisa, Italy", 
            "Department of Physics, University of Jyvaskyla, P.O. Box 35 (YFL), FI-40014, Jyvaskyla, Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Salvioni", 
        "givenName": "G.", 
        "id": "sg:person.010470446633.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010470446633.78"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2016-03-22", 
    "datePublishedReg": "2016-03-22", 
    "description": "We have recently constructed two very successful n-9\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$^9$$\\end{document}Be optical potentials (Bonaccorso and Charity in Phys Rev C89:024619, 2014). One by the Dispersive Optical Model (DOM) method and the other (AB) fully phenomenological. The two potentials have strong surface terms in common for both the real and the imaginary parts. This feature makes them particularly suitable to build a single-folded (light-) nucleus-9\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$^9$$\\end{document}Be optical potential by using ab-initio projectile densities such as those obtained with the VMC method (Wiringa http://www.phy.anl.gov/theory/research/density/). On the other hand, a VMC density together with experimental nucleon\u2013nucleon cross-sections can be used also to obtain a neutron and/or proton-9\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$^9$$\\end{document}Be imaginary folding potential. We will use here an ab-initio VMC density (Wiringa http://www.phy.anl.gov/theory/research/density/) to obtain both a n-9\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$^9$$\\end{document}Be single-folded potential and a nucleus-nucleus double-folded potential. In this work we report on the cases of 8\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$^8$$\\end{document}B, 8\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$^8$$\\end{document}Li and 8\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$^8$$\\end{document}C projectiles. Our approach could be the basis for a systematic study of optical potentials for light exotic nuclei scattering on such light targets. Some of the projectiles studied are cores of other exotic nuclei for which neutron knockout has been used to extract spectroscopic information. For those cases, our study will serve to make a quantitative assessment of the core-target part of the reaction description, in particular its localization.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00601-016-1082-4", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136823", 
        "issn": [
          "0177-7963", 
          "1432-5411"
        ], 
        "name": "Few-Body Systems", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "57"
      }
    ], 
    "keywords": [
      "optical potential", 
      "exotic nuclei", 
      "optical model methods", 
      "light exotic nuclei", 
      "light targets", 
      "neutron knockout", 
      "spectroscopic information", 
      "VMC method", 
      "imaginary part", 
      "reaction description", 
      "surface terms", 
      "projectile", 
      "projectile density", 
      "neutrons", 
      "density", 
      "nucleus", 
      "systematic study", 
      "potential", 
      "Single", 
      "core", 
      "description", 
      "method", 
      "target", 
      "work", 
      "features", 
      "terms", 
      "cases", 
      "localization", 
      "part", 
      "model method", 
      "basis", 
      "information", 
      "hand", 
      "quantitative assessment", 
      "approach", 
      "study", 
      "differences", 
      "knockout", 
      "assessment", 
      "Dispersive Optical Model (DOM) method", 
      "strong surface terms", 
      "ab-initio projectile densities", 
      "VMC density", 
      "ab-initio VMC density", 
      "such light targets", 
      "core-target part", 
      "Folding Nucleus-9Be Optical Potential", 
      "Nucleus-9Be Optical Potential"
    ], 
    "name": "Differences Between a Single- and a Double-Folding Nucleus-9Be Optical Potential", 
    "pagination": "331-336", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1029001785"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00601-016-1082-4"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00601-016-1082-4", 
      "https://app.dimensions.ai/details/publication/pub.1029001785"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:37", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_714.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00601-016-1082-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00601-016-1082-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00601-016-1082-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00601-016-1082-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00601-016-1082-4'


 

This table displays all metadata directly associated to this object as RDF triples.

145 TRIPLES      21 PREDICATES      73 URIs      65 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00601-016-1082-4 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author Nbd13f74b76474aa0afb8f9ec80ca5e68
4 schema:datePublished 2016-03-22
5 schema:datePublishedReg 2016-03-22
6 schema:description We have recently constructed two very successful n-9\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^9$$\end{document}Be optical potentials (Bonaccorso and Charity in Phys Rev C89:024619, 2014). One by the Dispersive Optical Model (DOM) method and the other (AB) fully phenomenological. The two potentials have strong surface terms in common for both the real and the imaginary parts. This feature makes them particularly suitable to build a single-folded (light-) nucleus-9\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^9$$\end{document}Be optical potential by using ab-initio projectile densities such as those obtained with the VMC method (Wiringa http://www.phy.anl.gov/theory/research/density/). On the other hand, a VMC density together with experimental nucleon–nucleon cross-sections can be used also to obtain a neutron and/or proton-9\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^9$$\end{document}Be imaginary folding potential. We will use here an ab-initio VMC density (Wiringa http://www.phy.anl.gov/theory/research/density/) to obtain both a n-9\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^9$$\end{document}Be single-folded potential and a nucleus-nucleus double-folded potential. In this work we report on the cases of 8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^8$$\end{document}B, 8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^8$$\end{document}Li and 8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^8$$\end{document}C projectiles. Our approach could be the basis for a systematic study of optical potentials for light exotic nuclei scattering on such light targets. Some of the projectiles studied are cores of other exotic nuclei for which neutron knockout has been used to extract spectroscopic information. For those cases, our study will serve to make a quantitative assessment of the core-target part of the reaction description, in particular its localization.
7 schema:genre article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N66c93d345c454408b1876bbe810f787b
11 N6b31aaff43e8446a88154ce0008930ff
12 sg:journal.1136823
13 schema:keywords Dispersive Optical Model (DOM) method
14 Folding Nucleus-9Be Optical Potential
15 Nucleus-9Be Optical Potential
16 Single
17 VMC density
18 VMC method
19 ab-initio VMC density
20 ab-initio projectile densities
21 approach
22 assessment
23 basis
24 cases
25 core
26 core-target part
27 density
28 description
29 differences
30 exotic nuclei
31 features
32 hand
33 imaginary part
34 information
35 knockout
36 light exotic nuclei
37 light targets
38 localization
39 method
40 model method
41 neutron knockout
42 neutrons
43 nucleus
44 optical model methods
45 optical potential
46 part
47 potential
48 projectile
49 projectile density
50 quantitative assessment
51 reaction description
52 spectroscopic information
53 strong surface terms
54 study
55 such light targets
56 surface terms
57 systematic study
58 target
59 terms
60 work
61 schema:name Differences Between a Single- and a Double-Folding Nucleus-9Be Optical Potential
62 schema:pagination 331-336
63 schema:productId Na9887922696c43faa84c97da53936bd9
64 Nac31a108699f439492316ab96c8476b8
65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029001785
66 https://doi.org/10.1007/s00601-016-1082-4
67 schema:sdDatePublished 2021-12-01T19:37
68 schema:sdLicense https://scigraph.springernature.com/explorer/license/
69 schema:sdPublisher Na6367f5e0a8e4cdc9fc14795438a2c0a
70 schema:url https://doi.org/10.1007/s00601-016-1082-4
71 sgo:license sg:explorer/license/
72 sgo:sdDataset articles
73 rdf:type schema:ScholarlyArticle
74 N0375404a57fb4640b1b5249c7e856bbf rdf:first sg:person.013220151476.06
75 rdf:rest N296d5a597bd24965be872f081bb1d3fe
76 N296d5a597bd24965be872f081bb1d3fe rdf:first sg:person.012731557245.80
77 rdf:rest Nde40b402d5ad4e98b2329d8d1871bdb3
78 N66c93d345c454408b1876bbe810f787b schema:volumeNumber 57
79 rdf:type schema:PublicationVolume
80 N6b31aaff43e8446a88154ce0008930ff schema:issueNumber 5
81 rdf:type schema:PublicationIssue
82 N86d71a0e61b6414b9ce769f501c75f0c schema:affiliation grid-institutes:None
83 schema:familyName Kumar
84 schema:givenName R.
85 rdf:type schema:Person
86 Na6367f5e0a8e4cdc9fc14795438a2c0a schema:name Springer Nature - SN SciGraph project
87 rdf:type schema:Organization
88 Na9887922696c43faa84c97da53936bd9 schema:name doi
89 schema:value 10.1007/s00601-016-1082-4
90 rdf:type schema:PropertyValue
91 Nac31a108699f439492316ab96c8476b8 schema:name dimensions_id
92 schema:value pub.1029001785
93 rdf:type schema:PropertyValue
94 Nbd13f74b76474aa0afb8f9ec80ca5e68 rdf:first sg:person.015715655423.21
95 rdf:rest N0375404a57fb4640b1b5249c7e856bbf
96 Nde40b402d5ad4e98b2329d8d1871bdb3 rdf:first N86d71a0e61b6414b9ce769f501c75f0c
97 rdf:rest Neeab88c42c944940b512a1b7e908bfd8
98 Neeab88c42c944940b512a1b7e908bfd8 rdf:first sg:person.010470446633.78
99 rdf:rest rdf:nil
100 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
101 schema:name Physical Sciences
102 rdf:type schema:DefinedTerm
103 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
104 schema:name Other Physical Sciences
105 rdf:type schema:DefinedTerm
106 sg:journal.1136823 schema:issn 0177-7963
107 1432-5411
108 schema:name Few-Body Systems
109 schema:publisher Springer Nature
110 rdf:type schema:Periodical
111 sg:person.010470446633.78 schema:affiliation grid-institutes:grid.9681.6
112 schema:familyName Salvioni
113 schema:givenName G.
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010470446633.78
115 rdf:type schema:Person
116 sg:person.012731557245.80 schema:affiliation grid-institutes:grid.34477.33
117 schema:familyName Charity
118 schema:givenName R. J.
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012731557245.80
120 rdf:type schema:Person
121 sg:person.013220151476.06 schema:affiliation grid-institutes:grid.425264.3
122 schema:familyName Carstoiu
123 schema:givenName F.
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013220151476.06
125 rdf:type schema:Person
126 sg:person.015715655423.21 schema:affiliation grid-institutes:None
127 schema:familyName Bonaccorso
128 schema:givenName A.
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015715655423.21
130 rdf:type schema:Person
131 grid-institutes:None schema:alternateName Department of Physics, Deenbandhu Chhoturam University of Science and Technology, Murthal, 131039, Sonepat, Haryana, India
132 INFN, Sez. di Pisa, Largo B. Pontecorvo 3, 56127, Pisa, Italy
133 schema:name Department of Physics, Deenbandhu Chhoturam University of Science and Technology, Murthal, 131039, Sonepat, Haryana, India
134 INFN, Sez. di Pisa, Largo B. Pontecorvo 3, 56127, Pisa, Italy
135 rdf:type schema:Organization
136 grid-institutes:grid.34477.33 schema:alternateName Department of Chemistry, Washington University, 63130, St. Louis, MO, USA
137 schema:name Department of Chemistry, Washington University, 63130, St. Louis, MO, USA
138 rdf:type schema:Organization
139 grid-institutes:grid.425264.3 schema:alternateName Institute of Atomic Physics, P.O. Box MG-6, Bucharest, Romania
140 schema:name Institute of Atomic Physics, P.O. Box MG-6, Bucharest, Romania
141 rdf:type schema:Organization
142 grid-institutes:grid.9681.6 schema:alternateName Department of Physics, University of Jyvaskyla, P.O. Box 35 (YFL), FI-40014, Jyvaskyla, Finland
143 schema:name Department of Physics, University of Jyvaskyla, P.O. Box 35 (YFL), FI-40014, Jyvaskyla, Finland
144 Dipartimento di Fisica, Università di Pisa, Largo B. Pontecorvo 3, 56127, Pisa, Italy
145 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...