Level Density of the Hénon-Heiles System Above the Critical Barrier Energy View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2006-04-28

AUTHORS

M. Brack, J. Kaidel, P. Winkler, S. N. Fedotkin

ABSTRACT

.We discuss the coarse-grained level density of the Hénon-Heiles system above the barrier energy, where the system is nearly chaotic. We use periodic orbit theory to approximate its oscillating part semiclassically via Gutzwiller’s semiclassical trace formula (extended by uniform approximations for the contributions of bifurcating orbits). Including only a few stable and unstable orbits, we reproduce the quantum-mechanical density of states very accurately. We also present a perturbative calculation of the stabilities of two infinite series of orbits (Rn and Lm), emanating from the shortest librating straight-line orbit (A) in a bifurcation cascade just below the barrier, which at the barrier have two common asymptotic Lyapunov exponents χR and χL. More... »

PAGES

147-152

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00601-005-0124-0

DOI

http://dx.doi.org/10.1007/s00601-005-0124-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1019434556


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institut f\u00fcr Theoretische Physik, Universit\u00e4t Regensburg, D-93040, Regensburg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.7727.5", 
          "name": [
            "Institut f\u00fcr Theoretische Physik, Universit\u00e4t Regensburg, D-93040, Regensburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Brack", 
        "givenName": "M.", 
        "id": "sg:person.012734147145.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012734147145.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut f\u00fcr Theoretische Physik, Universit\u00e4t Regensburg, D-93040, Regensburg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.7727.5", 
          "name": [
            "Institut f\u00fcr Theoretische Physik, Universit\u00e4t Regensburg, D-93040, Regensburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kaidel", 
        "givenName": "J.", 
        "id": "sg:person.01136073004.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136073004.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, University of Nevada, 89557, Reno, NV, USA", 
          "id": "http://www.grid.ac/institutes/grid.266818.3", 
          "name": [
            "Department of Physics, University of Nevada, 89557, Reno, NV, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Winkler", 
        "givenName": "P.", 
        "id": "sg:person.015253331047.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015253331047.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Nuclear Research, Prospekt Nauki 47, 252028, Kiev-28, Ukraine", 
          "id": "http://www.grid.ac/institutes/grid.450331.0", 
          "name": [
            "Institut f\u00fcr Theoretische Physik, Universit\u00e4t Regensburg, D-93040, Regensburg, Germany", 
            "Institute for Nuclear Research, Prospekt Nauki 47, 252028, Kiev-28, Ukraine"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fedotkin", 
        "givenName": "S. N.", 
        "id": "sg:person.014470453702.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014470453702.94"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1023/a:1017582218587", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000516379", 
          "https://doi.org/10.1023/a:1017582218587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-0983-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053543950", 
          "https://doi.org/10.1007/978-1-4612-0983-6"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006-04-28", 
    "datePublishedReg": "2006-04-28", 
    "description": "Abstract.We discuss the coarse-grained level density of the H\u00e9non-Heiles system above the barrier energy, where the system is nearly chaotic. We use periodic orbit theory to approximate its oscillating part semiclassically via Gutzwiller\u2019s semiclassical trace formula (extended by uniform approximations for the contributions of bifurcating orbits). Including only a few stable and unstable orbits, we reproduce the quantum-mechanical density of states very accurately. We also present a perturbative calculation of the stabilities of two infinite series of orbits (Rn and Lm), emanating from the shortest librating straight-line orbit (A) in a bifurcation cascade just below the barrier, which at the barrier have two common asymptotic Lyapunov exponents \u03c7R and \u03c7L.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00601-005-0124-0", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136823", 
        "issn": [
          "0177-7963", 
          "1432-5411"
        ], 
        "name": "Few-Body Systems", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2-4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "38"
      }
    ], 
    "keywords": [
      "H\u00e9non-Heiles system", 
      "semiclassical trace formula", 
      "straight-line orbit", 
      "periodic orbit theory", 
      "level density", 
      "Gutzwiller's semiclassical trace formula", 
      "orbit theory", 
      "quantum mechanical density", 
      "Lyapunov exponents", 
      "unstable orbits", 
      "infinite series", 
      "bifurcation cascade", 
      "oscillating part", 
      "trace formula", 
      "perturbative calculations", 
      "orbit", 
      "barrier energy", 
      "exponent", 
      "theory", 
      "system", 
      "formula", 
      "density", 
      "calculations", 
      "energy", 
      "stability", 
      "state", 
      "series", 
      "part", 
      "cascade", 
      "barriers"
    ], 
    "name": "Level Density of the H\u00e9non-Heiles System Above the Critical Barrier Energy", 
    "pagination": "147-152", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1019434556"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00601-005-0124-0"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00601-005-0124-0", 
      "https://app.dimensions.ai/details/publication/pub.1019434556"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:33", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_414.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00601-005-0124-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00601-005-0124-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00601-005-0124-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00601-005-0124-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00601-005-0124-0'


 

This table displays all metadata directly associated to this object as RDF triples.

123 TRIPLES      21 PREDICATES      56 URIs      46 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00601-005-0124-0 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N7f9fc722543941e3a1826058fee125e0
4 schema:citation sg:pub.10.1007/978-1-4612-0983-6
5 sg:pub.10.1023/a:1017582218587
6 schema:datePublished 2006-04-28
7 schema:datePublishedReg 2006-04-28
8 schema:description Abstract.We discuss the coarse-grained level density of the Hénon-Heiles system above the barrier energy, where the system is nearly chaotic. We use periodic orbit theory to approximate its oscillating part semiclassically via Gutzwiller’s semiclassical trace formula (extended by uniform approximations for the contributions of bifurcating orbits). Including only a few stable and unstable orbits, we reproduce the quantum-mechanical density of states very accurately. We also present a perturbative calculation of the stabilities of two infinite series of orbits (Rn and Lm), emanating from the shortest librating straight-line orbit (A) in a bifurcation cascade just below the barrier, which at the barrier have two common asymptotic Lyapunov exponents χR and χL.
9 schema:genre article
10 schema:isAccessibleForFree true
11 schema:isPartOf N0d236388decb4fdfa69b7a4385513bcd
12 Nfeee27a5063648bc896df427d544c205
13 sg:journal.1136823
14 schema:keywords Gutzwiller's semiclassical trace formula
15 Hénon-Heiles system
16 Lyapunov exponents
17 barrier energy
18 barriers
19 bifurcation cascade
20 calculations
21 cascade
22 density
23 energy
24 exponent
25 formula
26 infinite series
27 level density
28 orbit
29 orbit theory
30 oscillating part
31 part
32 periodic orbit theory
33 perturbative calculations
34 quantum mechanical density
35 semiclassical trace formula
36 series
37 stability
38 state
39 straight-line orbit
40 system
41 theory
42 trace formula
43 unstable orbits
44 schema:name Level Density of the Hénon-Heiles System Above the Critical Barrier Energy
45 schema:pagination 147-152
46 schema:productId N716f2330f2dc42ff9a0367a258d9cfe6
47 Ne1b982565424444c8a98243ab056d22b
48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019434556
49 https://doi.org/10.1007/s00601-005-0124-0
50 schema:sdDatePublished 2022-10-01T06:33
51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
52 schema:sdPublisher N2c6e1e78fa68489a8cb24411943f0434
53 schema:url https://doi.org/10.1007/s00601-005-0124-0
54 sgo:license sg:explorer/license/
55 sgo:sdDataset articles
56 rdf:type schema:ScholarlyArticle
57 N0d236388decb4fdfa69b7a4385513bcd schema:issueNumber 2-4
58 rdf:type schema:PublicationIssue
59 N1eb8d5fb838e4a8290947eed7c687822 rdf:first sg:person.01136073004.00
60 rdf:rest N21c70b4aeeb14ce08961fcdee8f321ae
61 N21c70b4aeeb14ce08961fcdee8f321ae rdf:first sg:person.015253331047.04
62 rdf:rest N63ac6e6379b9411ea2129fc1757fe01a
63 N2c6e1e78fa68489a8cb24411943f0434 schema:name Springer Nature - SN SciGraph project
64 rdf:type schema:Organization
65 N63ac6e6379b9411ea2129fc1757fe01a rdf:first sg:person.014470453702.94
66 rdf:rest rdf:nil
67 N716f2330f2dc42ff9a0367a258d9cfe6 schema:name doi
68 schema:value 10.1007/s00601-005-0124-0
69 rdf:type schema:PropertyValue
70 N7f9fc722543941e3a1826058fee125e0 rdf:first sg:person.012734147145.29
71 rdf:rest N1eb8d5fb838e4a8290947eed7c687822
72 Ne1b982565424444c8a98243ab056d22b schema:name dimensions_id
73 schema:value pub.1019434556
74 rdf:type schema:PropertyValue
75 Nfeee27a5063648bc896df427d544c205 schema:volumeNumber 38
76 rdf:type schema:PublicationVolume
77 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
78 schema:name Mathematical Sciences
79 rdf:type schema:DefinedTerm
80 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
81 schema:name Pure Mathematics
82 rdf:type schema:DefinedTerm
83 sg:journal.1136823 schema:issn 0177-7963
84 1432-5411
85 schema:name Few-Body Systems
86 schema:publisher Springer Nature
87 rdf:type schema:Periodical
88 sg:person.01136073004.00 schema:affiliation grid-institutes:grid.7727.5
89 schema:familyName Kaidel
90 schema:givenName J.
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136073004.00
92 rdf:type schema:Person
93 sg:person.012734147145.29 schema:affiliation grid-institutes:grid.7727.5
94 schema:familyName Brack
95 schema:givenName M.
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012734147145.29
97 rdf:type schema:Person
98 sg:person.014470453702.94 schema:affiliation grid-institutes:grid.450331.0
99 schema:familyName Fedotkin
100 schema:givenName S. N.
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014470453702.94
102 rdf:type schema:Person
103 sg:person.015253331047.04 schema:affiliation grid-institutes:grid.266818.3
104 schema:familyName Winkler
105 schema:givenName P.
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015253331047.04
107 rdf:type schema:Person
108 sg:pub.10.1007/978-1-4612-0983-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053543950
109 https://doi.org/10.1007/978-1-4612-0983-6
110 rdf:type schema:CreativeWork
111 sg:pub.10.1023/a:1017582218587 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000516379
112 https://doi.org/10.1023/a:1017582218587
113 rdf:type schema:CreativeWork
114 grid-institutes:grid.266818.3 schema:alternateName Department of Physics, University of Nevada, 89557, Reno, NV, USA
115 schema:name Department of Physics, University of Nevada, 89557, Reno, NV, USA
116 rdf:type schema:Organization
117 grid-institutes:grid.450331.0 schema:alternateName Institute for Nuclear Research, Prospekt Nauki 47, 252028, Kiev-28, Ukraine
118 schema:name Institut für Theoretische Physik, Universität Regensburg, D-93040, Regensburg, Germany
119 Institute for Nuclear Research, Prospekt Nauki 47, 252028, Kiev-28, Ukraine
120 rdf:type schema:Organization
121 grid-institutes:grid.7727.5 schema:alternateName Institut für Theoretische Physik, Universität Regensburg, D-93040, Regensburg, Germany
122 schema:name Institut für Theoretische Physik, Universität Regensburg, D-93040, Regensburg, Germany
123 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...