Pathological predictors for lymph node metastasis in T1 colorectal cancer View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2008-09-27

AUTHORS

Hitoshi Yamauchi, Kazutomo Togashi, Yutaka J. Kawamura, Hisanaga Horie, Junichi Sasaki, Shingo Tsujinaka, Yoshikazu Yasuda, Fumio Konishi

ABSTRACT

PurposeTo clarify pathological predictor for lymph node metastasis in T1 colorectal cancer.MethodsOne hundred and sixty-four patients who underwent surgery for single T1 colorectal cancer were reviewed. The pathological differentiations of non-well differentiation, invasion depth (≥2 000 μm), lymphatic channel involvement, venous invasion, and tumor budding were selected as candidate predictors. Tumor budding was estimated according to the definition proposed by Ueno et al. (Gastroenterology 2004; 127:385–394). The lymph node status was set for the endpoint. Logistic regression model was applied to analyze the predictors.ResultsLymph node involvement was observed in 9.8%. The positive rates were 13.4% for the pathological differentiations of non-well differentiation, 51.8% for invasion depth (≥2 000 μm), 6.1% for lymphatic channel involvement, 8.5% for venous invasion, and 14.6% for tumor budding. The pathological differentiations of non-well differentiation (P < 0.001) and tumor budding (P = 0.002) were significantly associated with lymph node metastasis in multivariate analysis. When either two significant factors was adopted for the prediction of the lymph node metastasis, the sensitivity, specificity, positive predictive value, and negative predictive value were 94%, 82%, 36%, and 99%, respectively.ConclusionThe pathological differentiations of non-well differentiation and tumor budding are useful predictors for lymph node metastasis in T1 colorectal cancer. More... »

PAGES

905-910

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00595-007-3751-x

DOI

http://dx.doi.org/10.1007/s00595-007-3751-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1050689492

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/18820865


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged, 80 and over", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Colorectal Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Logistic Models", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lymphatic Metastasis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neoplasm Invasiveness", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neoplasm Staging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Predictive Value of Tests", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Surgery, Saitama Medical Center, Jichi Medical University, Saitama, Japan", 
          "id": "http://www.grid.ac/institutes/grid.416093.9", 
          "name": [
            "Department of Surgery, Saitama Medical Center, Jichi Medical University, Saitama, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yamauchi", 
        "givenName": "Hitoshi", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Surgery, Jichi Medical University, 3311-1 Yakushiji, 329-0498, Shimotsuke, Tochigi, Japan", 
          "id": "http://www.grid.ac/institutes/grid.410804.9", 
          "name": [
            "Department of Surgery, Jichi Medical University, 3311-1 Yakushiji, 329-0498, Shimotsuke, Tochigi, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Togashi", 
        "givenName": "Kazutomo", 
        "id": "sg:person.01226546104.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01226546104.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Surgery, Saitama Medical Center, Jichi Medical University, Saitama, Japan", 
          "id": "http://www.grid.ac/institutes/grid.416093.9", 
          "name": [
            "Department of Surgery, Saitama Medical Center, Jichi Medical University, Saitama, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kawamura", 
        "givenName": "Yutaka J.", 
        "id": "sg:person.013137255677.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013137255677.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Surgery, Jichi Medical University, 3311-1 Yakushiji, 329-0498, Shimotsuke, Tochigi, Japan", 
          "id": "http://www.grid.ac/institutes/grid.410804.9", 
          "name": [
            "Department of Surgery, Jichi Medical University, 3311-1 Yakushiji, 329-0498, Shimotsuke, Tochigi, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Horie", 
        "givenName": "Hisanaga", 
        "id": "sg:person.0760333502.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0760333502.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Surgery, Saitama Medical Center, Jichi Medical University, Saitama, Japan", 
          "id": "http://www.grid.ac/institutes/grid.416093.9", 
          "name": [
            "Department of Surgery, Saitama Medical Center, Jichi Medical University, Saitama, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sasaki", 
        "givenName": "Junichi", 
        "id": "sg:person.014130430661.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014130430661.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Surgery, Saitama Medical Center, Jichi Medical University, Saitama, Japan", 
          "id": "http://www.grid.ac/institutes/grid.416093.9", 
          "name": [
            "Department of Surgery, Saitama Medical Center, Jichi Medical University, Saitama, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tsujinaka", 
        "givenName": "Shingo", 
        "id": "sg:person.0676447713.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0676447713.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Surgery, Jichi Medical University, 3311-1 Yakushiji, 329-0498, Shimotsuke, Tochigi, Japan", 
          "id": "http://www.grid.ac/institutes/grid.410804.9", 
          "name": [
            "Department of Surgery, Jichi Medical University, 3311-1 Yakushiji, 329-0498, Shimotsuke, Tochigi, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yasuda", 
        "givenName": "Yoshikazu", 
        "id": "sg:person.0735644341.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0735644341.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Surgery, Saitama Medical Center, Jichi Medical University, Saitama, Japan", 
          "id": "http://www.grid.ac/institutes/grid.416093.9", 
          "name": [
            "Department of Surgery, Saitama Medical Center, Jichi Medical University, Saitama, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Konishi", 
        "givenName": "Fumio", 
        "id": "sg:person.01272216415.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01272216415.22"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00535-004-1339-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020821843", 
          "https://doi.org/10.1007/s00535-004-1339-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02349636", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005344811", 
          "https://doi.org/10.1007/bf02349636"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s005350300004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035529467", 
          "https://doi.org/10.1007/s005350300004"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02469505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007024979", 
          "https://doi.org/10.1007/bf02469505"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02660767", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040325183", 
          "https://doi.org/10.1007/bf02660767"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-09-27", 
    "datePublishedReg": "2008-09-27", 
    "description": "PurposeTo clarify pathological predictor for lymph node metastasis in T1 colorectal cancer.MethodsOne hundred and sixty-four patients who underwent surgery for single T1 colorectal cancer were reviewed. The pathological differentiations of non-well differentiation, invasion depth (\u22652 000 \u03bcm), lymphatic channel involvement, venous invasion, and tumor budding were selected as candidate predictors. Tumor budding was estimated according to the definition proposed by Ueno et al. (Gastroenterology 2004; 127:385\u2013394). The lymph node status was set for the endpoint. Logistic regression model was applied to analyze the predictors.ResultsLymph node involvement was observed in 9.8%. The positive rates were 13.4% for the pathological differentiations of non-well differentiation, 51.8% for invasion depth (\u22652 000 \u03bcm), 6.1% for lymphatic channel involvement, 8.5% for venous invasion, and 14.6% for tumor budding. The pathological differentiations of non-well differentiation (P < 0.001) and tumor budding (P = 0.002) were significantly associated with lymph node metastasis in multivariate analysis. When either two significant factors was adopted for the prediction of the lymph node metastasis, the sensitivity, specificity, positive predictive value, and negative predictive value were 94%, 82%, 36%, and 99%, respectively.ConclusionThe pathological differentiations of non-well differentiation and tumor budding are useful predictors for lymph node metastasis in T1 colorectal cancer.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00595-007-3751-x", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1102161", 
        "issn": [
          "0941-1291", 
          "1436-2813"
        ], 
        "name": "Surgery Today", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "38"
      }
    ], 
    "keywords": [
      "lymph node metastasis", 
      "tumor budding", 
      "colorectal cancer", 
      "pathological differentiation", 
      "node metastasis", 
      "pathological predictors", 
      "venous invasion", 
      "channel involvement", 
      "predictive value", 
      "invasion depth", 
      "ResultsLymph node involvement", 
      "T1 colorectal cancer", 
      "negative predictive value", 
      "positive predictive value", 
      "logistic regression models", 
      "node involvement", 
      "MethodsOne hundred", 
      "metastasis", 
      "multivariate analysis", 
      "lymph", 
      "cancer", 
      "useful predictor", 
      "candidate predictors", 
      "predictors", 
      "regression models", 
      "involvement", 
      "positive rate", 
      "invasion", 
      "differentiation", 
      "significant factor", 
      "patients", 
      "surgery", 
      "PurposeTo", 
      "endpoint", 
      "budding", 
      "status", 
      "specificity", 
      "factors", 
      "sensitivity", 
      "rate", 
      "Ueno et al", 
      "values", 
      "analysis", 
      "definition", 
      "et al", 
      "model", 
      "hundreds", 
      "depth", 
      "prediction", 
      "al"
    ], 
    "name": "Pathological predictors for lymph node metastasis in T1 colorectal cancer", 
    "pagination": "905-910", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1050689492"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00595-007-3751-x"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "18820865"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00595-007-3751-x", 
      "https://app.dimensions.ai/details/publication/pub.1050689492"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_460.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00595-007-3751-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00595-007-3751-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00595-007-3751-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00595-007-3751-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00595-007-3751-x'


 

This table displays all metadata directly associated to this object as RDF triples.

239 TRIPLES      22 PREDICATES      95 URIs      82 LITERALS      21 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00595-007-3751-x schema:about N0352b742b002423397b113dce58b8ef6
2 N0dbb024bc1304b1db665112f67c58e83
3 N1c7d3484bd234649b39fb452529b3d50
4 N2ff6635a1c5f4391b29ada8cad39a786
5 N67297bb314f24fb8b5f88df4a233bbd2
6 N7a80901ccff94e2e81bac9ebedbcece3
7 N7ef74d5f6969479abd36bc46eb4a7f29
8 N978108e61e314d479a4b39cdb952cf4e
9 Na9c577ae8ad54967852d8010b04c53af
10 Nc7e2581e7e7f4aaca527ea7831c4963a
11 Ncd74773c263c4238a8765ba800365a4d
12 Ncdfa9aa051b54aaeba878de79e273812
13 Nce0989e405fd47b0b649bf7ebcdda25e
14 Ne83f2505fcdf4450828fb6cc4dc342be
15 anzsrc-for:11
16 anzsrc-for:1112
17 schema:author N7a4ee1b64f7140f39f6b4eb0a43e9fdf
18 schema:citation sg:pub.10.1007/bf02349636
19 sg:pub.10.1007/bf02469505
20 sg:pub.10.1007/bf02660767
21 sg:pub.10.1007/s00535-004-1339-4
22 sg:pub.10.1007/s005350300004
23 schema:datePublished 2008-09-27
24 schema:datePublishedReg 2008-09-27
25 schema:description PurposeTo clarify pathological predictor for lymph node metastasis in T1 colorectal cancer.MethodsOne hundred and sixty-four patients who underwent surgery for single T1 colorectal cancer were reviewed. The pathological differentiations of non-well differentiation, invasion depth (≥2 000 μm), lymphatic channel involvement, venous invasion, and tumor budding were selected as candidate predictors. Tumor budding was estimated according to the definition proposed by Ueno et al. (Gastroenterology 2004; 127:385–394). The lymph node status was set for the endpoint. Logistic regression model was applied to analyze the predictors.ResultsLymph node involvement was observed in 9.8%. The positive rates were 13.4% for the pathological differentiations of non-well differentiation, 51.8% for invasion depth (≥2 000 μm), 6.1% for lymphatic channel involvement, 8.5% for venous invasion, and 14.6% for tumor budding. The pathological differentiations of non-well differentiation (P < 0.001) and tumor budding (P = 0.002) were significantly associated with lymph node metastasis in multivariate analysis. When either two significant factors was adopted for the prediction of the lymph node metastasis, the sensitivity, specificity, positive predictive value, and negative predictive value were 94%, 82%, 36%, and 99%, respectively.ConclusionThe pathological differentiations of non-well differentiation and tumor budding are useful predictors for lymph node metastasis in T1 colorectal cancer.
26 schema:genre article
27 schema:inLanguage en
28 schema:isAccessibleForFree false
29 schema:isPartOf N7105a2b8d7c142fb8d12a1b5faf1e8ee
30 Nd0c67611796f4069b70035728b9f17d3
31 sg:journal.1102161
32 schema:keywords MethodsOne hundred
33 PurposeTo
34 ResultsLymph node involvement
35 T1 colorectal cancer
36 Ueno et al
37 al
38 analysis
39 budding
40 cancer
41 candidate predictors
42 channel involvement
43 colorectal cancer
44 definition
45 depth
46 differentiation
47 endpoint
48 et al
49 factors
50 hundreds
51 invasion
52 invasion depth
53 involvement
54 logistic regression models
55 lymph
56 lymph node metastasis
57 metastasis
58 model
59 multivariate analysis
60 negative predictive value
61 node involvement
62 node metastasis
63 pathological differentiation
64 pathological predictors
65 patients
66 positive predictive value
67 positive rate
68 prediction
69 predictive value
70 predictors
71 rate
72 regression models
73 sensitivity
74 significant factor
75 specificity
76 status
77 surgery
78 tumor budding
79 useful predictor
80 values
81 venous invasion
82 schema:name Pathological predictors for lymph node metastasis in T1 colorectal cancer
83 schema:pagination 905-910
84 schema:productId N5aeb1ba492424fc8853e26780d35f5cc
85 N70831dd13b6149b7a1b5dcf524b831f3
86 N95ca949d676740d79aff4eb6ea2d2048
87 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050689492
88 https://doi.org/10.1007/s00595-007-3751-x
89 schema:sdDatePublished 2022-05-20T07:24
90 schema:sdLicense https://scigraph.springernature.com/explorer/license/
91 schema:sdPublisher N4be34229747d43feb708af603efa821f
92 schema:url https://doi.org/10.1007/s00595-007-3751-x
93 sgo:license sg:explorer/license/
94 sgo:sdDataset articles
95 rdf:type schema:ScholarlyArticle
96 N0117a42dad23437282a393e6a42d9570 rdf:first sg:person.0760333502.93
97 rdf:rest N74ca3967f4664fdc8f8c5e8865b8be1e
98 N0352b742b002423397b113dce58b8ef6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Logistic Models
100 rdf:type schema:DefinedTerm
101 N0dbb024bc1304b1db665112f67c58e83 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Aged
103 rdf:type schema:DefinedTerm
104 N1c7d3484bd234649b39fb452529b3d50 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Middle Aged
106 rdf:type schema:DefinedTerm
107 N28f69a57159644b798b5bf7bf108c2f6 schema:affiliation grid-institutes:grid.416093.9
108 schema:familyName Yamauchi
109 schema:givenName Hitoshi
110 rdf:type schema:Person
111 N2ff6635a1c5f4391b29ada8cad39a786 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Colorectal Neoplasms
113 rdf:type schema:DefinedTerm
114 N3f1325cefb4641709ffd41d42531dca9 rdf:first sg:person.013137255677.13
115 rdf:rest N0117a42dad23437282a393e6a42d9570
116 N4be34229747d43feb708af603efa821f schema:name Springer Nature - SN SciGraph project
117 rdf:type schema:Organization
118 N5aeb1ba492424fc8853e26780d35f5cc schema:name pubmed_id
119 schema:value 18820865
120 rdf:type schema:PropertyValue
121 N67297bb314f24fb8b5f88df4a233bbd2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Male
123 rdf:type schema:DefinedTerm
124 N70831dd13b6149b7a1b5dcf524b831f3 schema:name doi
125 schema:value 10.1007/s00595-007-3751-x
126 rdf:type schema:PropertyValue
127 N7105a2b8d7c142fb8d12a1b5faf1e8ee schema:issueNumber 10
128 rdf:type schema:PublicationIssue
129 N74ca3967f4664fdc8f8c5e8865b8be1e rdf:first sg:person.014130430661.38
130 rdf:rest Ne043a703b2004e078dbbc71039675136
131 N7a4ee1b64f7140f39f6b4eb0a43e9fdf rdf:first N28f69a57159644b798b5bf7bf108c2f6
132 rdf:rest N87db0f11713c4e1ea04acecd01827eb2
133 N7a80901ccff94e2e81bac9ebedbcece3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Neoplasm Invasiveness
135 rdf:type schema:DefinedTerm
136 N7ef74d5f6969479abd36bc46eb4a7f29 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Predictive Value of Tests
138 rdf:type schema:DefinedTerm
139 N87db0f11713c4e1ea04acecd01827eb2 rdf:first sg:person.01226546104.78
140 rdf:rest N3f1325cefb4641709ffd41d42531dca9
141 N95ca949d676740d79aff4eb6ea2d2048 schema:name dimensions_id
142 schema:value pub.1050689492
143 rdf:type schema:PropertyValue
144 N978108e61e314d479a4b39cdb952cf4e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Aged, 80 and over
146 rdf:type schema:DefinedTerm
147 Na9c577ae8ad54967852d8010b04c53af schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Neoplasm Staging
149 rdf:type schema:DefinedTerm
150 Nc7e2581e7e7f4aaca527ea7831c4963a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Sensitivity and Specificity
152 rdf:type schema:DefinedTerm
153 Ncd74773c263c4238a8765ba800365a4d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Lymphatic Metastasis
155 rdf:type schema:DefinedTerm
156 Ncdfa9aa051b54aaeba878de79e273812 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
157 schema:name Female
158 rdf:type schema:DefinedTerm
159 Nce0989e405fd47b0b649bf7ebcdda25e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
160 schema:name Humans
161 rdf:type schema:DefinedTerm
162 Nd0c67611796f4069b70035728b9f17d3 schema:volumeNumber 38
163 rdf:type schema:PublicationVolume
164 Ne043a703b2004e078dbbc71039675136 rdf:first sg:person.0676447713.26
165 rdf:rest Nee5ba07cb31a465aae6c987d9b373c86
166 Ne226e3cb3c4146cf9052b1de38cbb4bd rdf:first sg:person.01272216415.22
167 rdf:rest rdf:nil
168 Ne83f2505fcdf4450828fb6cc4dc342be schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
169 schema:name Adult
170 rdf:type schema:DefinedTerm
171 Nee5ba07cb31a465aae6c987d9b373c86 rdf:first sg:person.0735644341.09
172 rdf:rest Ne226e3cb3c4146cf9052b1de38cbb4bd
173 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
174 schema:name Medical and Health Sciences
175 rdf:type schema:DefinedTerm
176 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
177 schema:name Oncology and Carcinogenesis
178 rdf:type schema:DefinedTerm
179 sg:journal.1102161 schema:issn 0941-1291
180 1436-2813
181 schema:name Surgery Today
182 schema:publisher Springer Nature
183 rdf:type schema:Periodical
184 sg:person.01226546104.78 schema:affiliation grid-institutes:grid.410804.9
185 schema:familyName Togashi
186 schema:givenName Kazutomo
187 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01226546104.78
188 rdf:type schema:Person
189 sg:person.01272216415.22 schema:affiliation grid-institutes:grid.416093.9
190 schema:familyName Konishi
191 schema:givenName Fumio
192 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01272216415.22
193 rdf:type schema:Person
194 sg:person.013137255677.13 schema:affiliation grid-institutes:grid.416093.9
195 schema:familyName Kawamura
196 schema:givenName Yutaka J.
197 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013137255677.13
198 rdf:type schema:Person
199 sg:person.014130430661.38 schema:affiliation grid-institutes:grid.416093.9
200 schema:familyName Sasaki
201 schema:givenName Junichi
202 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014130430661.38
203 rdf:type schema:Person
204 sg:person.0676447713.26 schema:affiliation grid-institutes:grid.416093.9
205 schema:familyName Tsujinaka
206 schema:givenName Shingo
207 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0676447713.26
208 rdf:type schema:Person
209 sg:person.0735644341.09 schema:affiliation grid-institutes:grid.410804.9
210 schema:familyName Yasuda
211 schema:givenName Yoshikazu
212 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0735644341.09
213 rdf:type schema:Person
214 sg:person.0760333502.93 schema:affiliation grid-institutes:grid.410804.9
215 schema:familyName Horie
216 schema:givenName Hisanaga
217 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0760333502.93
218 rdf:type schema:Person
219 sg:pub.10.1007/bf02349636 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005344811
220 https://doi.org/10.1007/bf02349636
221 rdf:type schema:CreativeWork
222 sg:pub.10.1007/bf02469505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007024979
223 https://doi.org/10.1007/bf02469505
224 rdf:type schema:CreativeWork
225 sg:pub.10.1007/bf02660767 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040325183
226 https://doi.org/10.1007/bf02660767
227 rdf:type schema:CreativeWork
228 sg:pub.10.1007/s00535-004-1339-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020821843
229 https://doi.org/10.1007/s00535-004-1339-4
230 rdf:type schema:CreativeWork
231 sg:pub.10.1007/s005350300004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035529467
232 https://doi.org/10.1007/s005350300004
233 rdf:type schema:CreativeWork
234 grid-institutes:grid.410804.9 schema:alternateName Department of Surgery, Jichi Medical University, 3311-1 Yakushiji, 329-0498, Shimotsuke, Tochigi, Japan
235 schema:name Department of Surgery, Jichi Medical University, 3311-1 Yakushiji, 329-0498, Shimotsuke, Tochigi, Japan
236 rdf:type schema:Organization
237 grid-institutes:grid.416093.9 schema:alternateName Department of Surgery, Saitama Medical Center, Jichi Medical University, Saitama, Japan
238 schema:name Department of Surgery, Saitama Medical Center, Jichi Medical University, Saitama, Japan
239 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...