A new geometric model to quantify the area of glenoid bone defect and medialisation of the native joint line in ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-27

AUTHORS

Riccardo Maria Lanzetti, Marco Spoliti

ABSTRACT

PURPOSE: To propose a geometric model to quantify the bone defect and the glenoid medialisation (in millimetres) compared to the native joint line. We also evaluated the reliability of this geometric model. METHODS: Using two-dimensional CT imaging, we built a hypothetical triangle on the axial scan consisting of the following: side A, length (millimetres) of the glenoid bone; side B, average length (millimetres) of the glenoid in a healthy population; side C, the missing side; and angle α, the retroversion angle calculated using the Friedman method. The resulting triangle represents the bone defect, and its height represents the medialisation of the native joint line. To estimate inter-operator reliability, two physicians (operator 1 and operator 2) took the following measurements: angle α, side A, side C, semi-perimeter, area defect and height. RESULTS: Forty participants (mean age ± SD 45 ± 10 years, range 26-43 years)-22 women and 18 men-participated in the study. We applied the cosine theorem (Carnot theorem) to calculate side C. After obtaining the three sides, the area of the triangle can be determined. Once the area is known, it is possible to extrapolate the height of the triangle, which corresponds to the loss of vault depth due to the bone defect. With respect to inter-operator reliability, the ICCs for all measurements were > 0.99, exhibiting a very high correlation. CONCLUSIONS: The proposed geometric model can be used to quantify the glenoid bone deficit and the glenoid medialisation compared to the native joint line, which can be used to improve surgical treatment. More... »

PAGES

1-6

References to SciGraph publications

  • 2012-07. 3D morphometric analysis of 43 scapulae in SURGICAL AND RADIOLOGIC ANATOMY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00590-019-02422-6

    DOI

    http://dx.doi.org/10.1007/s00590-019-02422-6

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1113012972

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30915555


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Clinical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Ospedale San Camillo", 
              "id": "https://www.grid.ac/institutes/grid.416308.8", 
              "name": [
                "Orthopaedics and Traumatology Unit, Department Emergency and Acceptance, San Camillo - Forlanini Hospital, Rome, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lanzetti", 
            "givenName": "Riccardo Maria", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Ospedale San Camillo", 
              "id": "https://www.grid.ac/institutes/grid.416308.8", 
              "name": [
                "Orthopaedics and Traumatology Unit, Department Emergency and Acceptance, San Camillo - Forlanini Hospital, Rome, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Spoliti", 
            "givenName": "Marco", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1302/0301-620x.86b3.14024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000019937"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jse.2013.01.037", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005100814"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jse.2009.02.013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005436788"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1067/mse.2000.106921", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005510254"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jse.2004.10.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016427050"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00276-012-0933-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017832274", 
              "https://doi.org/10.1007/s00276-012-0933-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jse.2007.08.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019960238"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jse.2013.04.014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020774898"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1067/mse.2001.115269", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020935911"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jse.2008.02.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025555693"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jse.2007.07.013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028092131"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1037/0033-2909.86.2.420", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038345864"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jse.2007.09.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039756613"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jse.2005.04.009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040631018"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jse.2009.11.044", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046403488"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jse.2007.03.015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049878730"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2106/00004623-199274070-00009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068891197"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2106/00004623-200302000-00011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068895471"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2106/jbjs.e.00851", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068899816"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2106/jbjs.e.00851", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068899816"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2106/jbjs.e.00851", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068899816"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2106/jbjs.j.01994", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068902412"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2106/jbjs.j.01994", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068902412"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2106/jbjs.j.01994", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068902412"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2106/jbjs.k.00486", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068902522"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2106/jbjs.k.00486", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068902522"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2106/jbjs.k.00486", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068902522"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5014/ajot.47.1.10", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072555945"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1077241887", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1078439396", 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-03-27", 
        "datePublishedReg": "2019-03-27", 
        "description": "PURPOSE: To propose a geometric model to quantify the bone defect and the glenoid medialisation (in millimetres) compared to the native joint line. We also evaluated the reliability of this geometric model.\nMETHODS: Using two-dimensional CT imaging, we built a hypothetical triangle on the axial scan consisting of the following: side A, length (millimetres) of the glenoid bone; side B, average length (millimetres) of the glenoid in a healthy population; side C, the missing side; and angle \u03b1, the retroversion angle calculated using the Friedman method. The resulting triangle represents the bone defect, and its height represents the medialisation of the native joint line. To estimate inter-operator reliability, two physicians (operator 1 and operator 2) took the following measurements: angle \u03b1, side A, side C, semi-perimeter, area defect and height.\nRESULTS: Forty participants (mean age\u2009\u00b1\u2009SD 45\u2009\u00b1\u200910\u00a0years, range 26-43\u00a0years)-22 women and 18 men-participated in the study. We applied the cosine theorem (Carnot theorem) to calculate side C. After obtaining the three sides, the area of the triangle can be determined. Once the area is known, it is possible to extrapolate the height of the triangle, which corresponds to the loss of vault depth due to the bone defect. With respect to inter-operator reliability, the ICCs for all measurements were\u2009>\u20090.99, exhibiting a very high correlation.\nCONCLUSIONS: The proposed geometric model can be used to quantify the glenoid bone deficit and the glenoid medialisation compared to the native joint line, which can be used to improve surgical treatment.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00590-019-02422-6", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1114904", 
            "issn": [
              "1633-8065", 
              "1432-1068"
            ], 
            "name": "European Journal of Orthopaedic Surgery & Traumatology", 
            "type": "Periodical"
          }
        ], 
        "name": "A new geometric model to quantify the area of glenoid bone defect and medialisation of the native joint line in glenohumeral arthritis", 
        "pagination": "1-6", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "fcb835df4b54d238892f9c0c46ae5b8194679b407af70db3675e1d5588b548fb"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30915555"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "9518037"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00590-019-02422-6"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1113012972"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00590-019-02422-6", 
          "https://app.dimensions.ai/details/publication/pub.1113012972"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:18", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78944_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs00590-019-02422-6"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00590-019-02422-6'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00590-019-02422-6'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00590-019-02422-6'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00590-019-02422-6'


     

    This table displays all metadata directly associated to this object as RDF triples.

    139 TRIPLES      21 PREDICATES      50 URIs      18 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00590-019-02422-6 schema:about anzsrc-for:11
    2 anzsrc-for:1103
    3 schema:author N4f6e5195c9f1461ca3f3dc3d2b116e76
    4 schema:citation sg:pub.10.1007/s00276-012-0933-z
    5 https://app.dimensions.ai/details/publication/pub.1077241887
    6 https://app.dimensions.ai/details/publication/pub.1078439396
    7 https://doi.org/10.1016/j.jse.2004.10.006
    8 https://doi.org/10.1016/j.jse.2005.04.009
    9 https://doi.org/10.1016/j.jse.2007.03.015
    10 https://doi.org/10.1016/j.jse.2007.07.013
    11 https://doi.org/10.1016/j.jse.2007.08.010
    12 https://doi.org/10.1016/j.jse.2007.09.006
    13 https://doi.org/10.1016/j.jse.2008.02.010
    14 https://doi.org/10.1016/j.jse.2009.02.013
    15 https://doi.org/10.1016/j.jse.2009.11.044
    16 https://doi.org/10.1016/j.jse.2013.01.037
    17 https://doi.org/10.1016/j.jse.2013.04.014
    18 https://doi.org/10.1037/0033-2909.86.2.420
    19 https://doi.org/10.1067/mse.2000.106921
    20 https://doi.org/10.1067/mse.2001.115269
    21 https://doi.org/10.1302/0301-620x.86b3.14024
    22 https://doi.org/10.2106/00004623-199274070-00009
    23 https://doi.org/10.2106/00004623-200302000-00011
    24 https://doi.org/10.2106/jbjs.e.00851
    25 https://doi.org/10.2106/jbjs.j.01994
    26 https://doi.org/10.2106/jbjs.k.00486
    27 https://doi.org/10.5014/ajot.47.1.10
    28 schema:datePublished 2019-03-27
    29 schema:datePublishedReg 2019-03-27
    30 schema:description PURPOSE: To propose a geometric model to quantify the bone defect and the glenoid medialisation (in millimetres) compared to the native joint line. We also evaluated the reliability of this geometric model. METHODS: Using two-dimensional CT imaging, we built a hypothetical triangle on the axial scan consisting of the following: side A, length (millimetres) of the glenoid bone; side B, average length (millimetres) of the glenoid in a healthy population; side C, the missing side; and angle α, the retroversion angle calculated using the Friedman method. The resulting triangle represents the bone defect, and its height represents the medialisation of the native joint line. To estimate inter-operator reliability, two physicians (operator 1 and operator 2) took the following measurements: angle α, side A, side C, semi-perimeter, area defect and height. RESULTS: Forty participants (mean age ± SD 45 ± 10 years, range 26-43 years)-22 women and 18 men-participated in the study. We applied the cosine theorem (Carnot theorem) to calculate side C. After obtaining the three sides, the area of the triangle can be determined. Once the area is known, it is possible to extrapolate the height of the triangle, which corresponds to the loss of vault depth due to the bone defect. With respect to inter-operator reliability, the ICCs for all measurements were > 0.99, exhibiting a very high correlation. CONCLUSIONS: The proposed geometric model can be used to quantify the glenoid bone deficit and the glenoid medialisation compared to the native joint line, which can be used to improve surgical treatment.
    31 schema:genre research_article
    32 schema:inLanguage en
    33 schema:isAccessibleForFree false
    34 schema:isPartOf sg:journal.1114904
    35 schema:name A new geometric model to quantify the area of glenoid bone defect and medialisation of the native joint line in glenohumeral arthritis
    36 schema:pagination 1-6
    37 schema:productId N3b583aeffb0b446785b8f0b725fa771f
    38 N4f255662c677483d841d4124da8bd702
    39 N968f897a38a74756a0735e2eac6d54f0
    40 Nadfb8096fdc24a9a8ebf79235a6b4e37
    41 Nee061ec681e741dc9a98a2d1882fffa8
    42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113012972
    43 https://doi.org/10.1007/s00590-019-02422-6
    44 schema:sdDatePublished 2019-04-11T13:18
    45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    46 schema:sdPublisher N881e2b0476ad4224be73c00658bb99a2
    47 schema:url https://link.springer.com/10.1007%2Fs00590-019-02422-6
    48 sgo:license sg:explorer/license/
    49 sgo:sdDataset articles
    50 rdf:type schema:ScholarlyArticle
    51 N1ed5137232234ee6af67b8d1fcbaf0d2 schema:affiliation https://www.grid.ac/institutes/grid.416308.8
    52 schema:familyName Spoliti
    53 schema:givenName Marco
    54 rdf:type schema:Person
    55 N3b583aeffb0b446785b8f0b725fa771f schema:name doi
    56 schema:value 10.1007/s00590-019-02422-6
    57 rdf:type schema:PropertyValue
    58 N3ef7d1830daa4ae4b102284df5b3d8bb rdf:first N1ed5137232234ee6af67b8d1fcbaf0d2
    59 rdf:rest rdf:nil
    60 N4f255662c677483d841d4124da8bd702 schema:name pubmed_id
    61 schema:value 30915555
    62 rdf:type schema:PropertyValue
    63 N4f6e5195c9f1461ca3f3dc3d2b116e76 rdf:first Nf6decd99bc2049578ae70029eca97d77
    64 rdf:rest N3ef7d1830daa4ae4b102284df5b3d8bb
    65 N881e2b0476ad4224be73c00658bb99a2 schema:name Springer Nature - SN SciGraph project
    66 rdf:type schema:Organization
    67 N968f897a38a74756a0735e2eac6d54f0 schema:name readcube_id
    68 schema:value fcb835df4b54d238892f9c0c46ae5b8194679b407af70db3675e1d5588b548fb
    69 rdf:type schema:PropertyValue
    70 Nadfb8096fdc24a9a8ebf79235a6b4e37 schema:name nlm_unique_id
    71 schema:value 9518037
    72 rdf:type schema:PropertyValue
    73 Nee061ec681e741dc9a98a2d1882fffa8 schema:name dimensions_id
    74 schema:value pub.1113012972
    75 rdf:type schema:PropertyValue
    76 Nf6decd99bc2049578ae70029eca97d77 schema:affiliation https://www.grid.ac/institutes/grid.416308.8
    77 schema:familyName Lanzetti
    78 schema:givenName Riccardo Maria
    79 rdf:type schema:Person
    80 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    81 schema:name Medical and Health Sciences
    82 rdf:type schema:DefinedTerm
    83 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
    84 schema:name Clinical Sciences
    85 rdf:type schema:DefinedTerm
    86 sg:journal.1114904 schema:issn 1432-1068
    87 1633-8065
    88 schema:name European Journal of Orthopaedic Surgery & Traumatology
    89 rdf:type schema:Periodical
    90 sg:pub.10.1007/s00276-012-0933-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1017832274
    91 https://doi.org/10.1007/s00276-012-0933-z
    92 rdf:type schema:CreativeWork
    93 https://app.dimensions.ai/details/publication/pub.1077241887 schema:CreativeWork
    94 https://app.dimensions.ai/details/publication/pub.1078439396 schema:CreativeWork
    95 https://doi.org/10.1016/j.jse.2004.10.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016427050
    96 rdf:type schema:CreativeWork
    97 https://doi.org/10.1016/j.jse.2005.04.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040631018
    98 rdf:type schema:CreativeWork
    99 https://doi.org/10.1016/j.jse.2007.03.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049878730
    100 rdf:type schema:CreativeWork
    101 https://doi.org/10.1016/j.jse.2007.07.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028092131
    102 rdf:type schema:CreativeWork
    103 https://doi.org/10.1016/j.jse.2007.08.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019960238
    104 rdf:type schema:CreativeWork
    105 https://doi.org/10.1016/j.jse.2007.09.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039756613
    106 rdf:type schema:CreativeWork
    107 https://doi.org/10.1016/j.jse.2008.02.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025555693
    108 rdf:type schema:CreativeWork
    109 https://doi.org/10.1016/j.jse.2009.02.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005436788
    110 rdf:type schema:CreativeWork
    111 https://doi.org/10.1016/j.jse.2009.11.044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046403488
    112 rdf:type schema:CreativeWork
    113 https://doi.org/10.1016/j.jse.2013.01.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005100814
    114 rdf:type schema:CreativeWork
    115 https://doi.org/10.1016/j.jse.2013.04.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020774898
    116 rdf:type schema:CreativeWork
    117 https://doi.org/10.1037/0033-2909.86.2.420 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038345864
    118 rdf:type schema:CreativeWork
    119 https://doi.org/10.1067/mse.2000.106921 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005510254
    120 rdf:type schema:CreativeWork
    121 https://doi.org/10.1067/mse.2001.115269 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020935911
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1302/0301-620x.86b3.14024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000019937
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.2106/00004623-199274070-00009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068891197
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.2106/00004623-200302000-00011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068895471
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.2106/jbjs.e.00851 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068899816
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.2106/jbjs.j.01994 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068902412
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.2106/jbjs.k.00486 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068902522
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.5014/ajot.47.1.10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072555945
    136 rdf:type schema:CreativeWork
    137 https://www.grid.ac/institutes/grid.416308.8 schema:alternateName Ospedale San Camillo
    138 schema:name Orthopaedics and Traumatology Unit, Department Emergency and Acceptance, San Camillo - Forlanini Hospital, Rome, Italy
    139 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...