Grüss-Type Inequalities by Means of Generalized Fractional Integrals View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04-02

AUTHORS

J. Vanterler da C. Sousa, D. S. Oliveira, E. Capelas de Oliveira

ABSTRACT

We use a recently proposed fractional integral to establish a generalization of Grüss-type integral inequalities. We prove two theorems about these inequalities and enunciate and prove other inequalities associated with this fractional operator.

PAGES

1-19

References to SciGraph publications

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00574-019-00138-z

DOI

http://dx.doi.org/10.1007/s00574-019-00138-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113199676


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "affiliation": {
          "name": [
            "Department of Applied Mathematics, Imecc\u2013Unicamp, 13083-859, Campinas, SP, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sousa", 
        "givenName": "J. Vanterler da C.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Federal University of Paran\u00e1", 
          "id": "https://www.grid.ac/institutes/grid.20736.30", 
          "name": [
            "Coordination of Civil Engineering, Technological Federal University of Paran\u00e1, 85053-525, Guarapuava, PR, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Oliveira", 
        "givenName": "D. S.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Applied Mathematics, Imecc\u2013Unicamp, 13083-859, Campinas, SP, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "de Oliveira", 
        "givenName": "E. Capelas", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1006/jmaa.1999.6618", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002700019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amc.2011.03.062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008834612"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmaa.2016.09.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016823766"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mcm.2011.12.048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017348681"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1029-242x-2014-119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020578559", 
          "https://doi.org/10.1186/1029-242x-2014-119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1155/2010/148102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022621887", 
          "https://doi.org/10.1155/2010/148102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1029-242x-2012-299", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027583512", 
          "https://doi.org/10.1186/1029-242x-2012-299"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01201355", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029669045", 
          "https://doi.org/10.1007/bf01201355"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmaa.2000.6977", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033345395"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2298/tsci151224222y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046186481"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1029-242x-2013-549", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046281166", 
          "https://doi.org/10.1186/1029-242x-2013-549"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13660-015-0688-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051883481", 
          "https://doi.org/10.1186/s13660-015-0688-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13660-015-0688-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051883481", 
          "https://doi.org/10.1186/s13660-015-0688-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/proc/13488", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059345794"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.12785/msl/030301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064669662"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.15352/afa/1399900993", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067742034"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2140/pjm.1961.11.39", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069063005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2298/tsci161216326y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069361907"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4064/cm108-2-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072181855"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.22436/jnsa.010.02.22", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083990863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physa.2017.04.054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084932356"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7153/mia-2017-20-70", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092209222"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7153/mia-2017-20-70", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092209222"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7153/mia-2017-20-70", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092209222"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7153/mia-2017-20-70", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092209222"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7153/mia-2017-20-70", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092209222"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511817106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098669357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3934/math.2017.4.692", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099848817"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.28924/2291-8639-16-2018-83", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100183783"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3934/math.2018.1.131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101480293"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40314-018-0717-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107347731", 
          "https://doi.org/10.1007/s40314-018-0717-0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04-02", 
    "datePublishedReg": "2019-04-02", 
    "description": "We use a recently proposed fractional integral to establish a generalization of Gr\u00fcss-type integral inequalities. We prove two theorems about these inequalities and enunciate and prove other inequalities associated with this fractional operator.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00574-019-00138-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1295198", 
        "issn": [
          "0100-3569", 
          "1678-7714"
        ], 
        "name": "Bulletin of the Brazilian Mathematical Society, New Series", 
        "type": "Periodical"
      }
    ], 
    "name": "Gr\u00fcss-Type Inequalities by Means of Generalized Fractional Integrals", 
    "pagination": "1-19", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00574-019-00138-z"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2b96311c13d53af666831049b644dbdb8a5e5ea018c3d9f65768d9c59b468086"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113199676"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00574-019-00138-z", 
      "https://app.dimensions.ai/details/publication/pub.1113199676"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-15T09:23", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000376_0000000376/records_56185_00000006.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00574-019-00138-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00574-019-00138-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00574-019-00138-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00574-019-00138-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00574-019-00138-z'


 

This table displays all metadata directly associated to this object as RDF triples.

147 TRIPLES      20 PREDICATES      48 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00574-019-00138-z schema:author N39cd16aaa62545c2b13a275419650317
2 schema:citation sg:pub.10.1007/bf01201355
3 sg:pub.10.1007/s40314-018-0717-0
4 sg:pub.10.1155/2010/148102
5 sg:pub.10.1186/1029-242x-2012-299
6 sg:pub.10.1186/1029-242x-2013-549
7 sg:pub.10.1186/1029-242x-2014-119
8 sg:pub.10.1186/s13660-015-0688-2
9 https://doi.org/10.1006/jmaa.1999.6618
10 https://doi.org/10.1006/jmaa.2000.6977
11 https://doi.org/10.1016/j.amc.2011.03.062
12 https://doi.org/10.1016/j.jmaa.2016.09.018
13 https://doi.org/10.1016/j.mcm.2011.12.048
14 https://doi.org/10.1016/j.physa.2017.04.054
15 https://doi.org/10.1017/cbo9780511817106
16 https://doi.org/10.1090/proc/13488
17 https://doi.org/10.12785/msl/030301
18 https://doi.org/10.15352/afa/1399900993
19 https://doi.org/10.2140/pjm.1961.11.39
20 https://doi.org/10.22436/jnsa.010.02.22
21 https://doi.org/10.2298/tsci151224222y
22 https://doi.org/10.2298/tsci161216326y
23 https://doi.org/10.28924/2291-8639-16-2018-83
24 https://doi.org/10.3934/math.2017.4.692
25 https://doi.org/10.3934/math.2018.1.131
26 https://doi.org/10.4064/cm108-2-7
27 https://doi.org/10.7153/mia-2017-20-70
28 schema:datePublished 2019-04-02
29 schema:datePublishedReg 2019-04-02
30 schema:description We use a recently proposed fractional integral to establish a generalization of Grüss-type integral inequalities. We prove two theorems about these inequalities and enunciate and prove other inequalities associated with this fractional operator.
31 schema:genre research_article
32 schema:inLanguage en
33 schema:isAccessibleForFree false
34 schema:isPartOf sg:journal.1295198
35 schema:name Grüss-Type Inequalities by Means of Generalized Fractional Integrals
36 schema:pagination 1-19
37 schema:productId N129b77685b1c44e98ba931fd36681701
38 N38dcdd8adaa1452abdd499eb53faf66b
39 N6a2bc6285d9f44f9a673ea6602811ac2
40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113199676
41 https://doi.org/10.1007/s00574-019-00138-z
42 schema:sdDatePublished 2019-04-15T09:23
43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
44 schema:sdPublisher N70d1c8368f534aa7985a926ba1b86812
45 schema:url https://link.springer.com/10.1007%2Fs00574-019-00138-z
46 sgo:license sg:explorer/license/
47 sgo:sdDataset articles
48 rdf:type schema:ScholarlyArticle
49 N129b77685b1c44e98ba931fd36681701 schema:name readcube_id
50 schema:value 2b96311c13d53af666831049b644dbdb8a5e5ea018c3d9f65768d9c59b468086
51 rdf:type schema:PropertyValue
52 N38dcdd8adaa1452abdd499eb53faf66b schema:name dimensions_id
53 schema:value pub.1113199676
54 rdf:type schema:PropertyValue
55 N39cd16aaa62545c2b13a275419650317 rdf:first N55236f3a51434cfbac8ebc241fa103d9
56 rdf:rest N98f38e321333485d9b392367966738dd
57 N4195765d1bfc43329a0588eaf73dd8f5 schema:affiliation N967415d998dc424a989579b72717080e
58 schema:familyName de Oliveira
59 schema:givenName E. Capelas
60 rdf:type schema:Person
61 N534f1f0c76e04c289496ea16a51f8fda schema:affiliation https://www.grid.ac/institutes/grid.20736.30
62 schema:familyName Oliveira
63 schema:givenName D. S.
64 rdf:type schema:Person
65 N55236f3a51434cfbac8ebc241fa103d9 schema:affiliation N66ade695d16a433f915e98ad7755050f
66 schema:familyName Sousa
67 schema:givenName J. Vanterler da C.
68 rdf:type schema:Person
69 N66ade695d16a433f915e98ad7755050f schema:name Department of Applied Mathematics, Imecc–Unicamp, 13083-859, Campinas, SP, Brazil
70 rdf:type schema:Organization
71 N6a2bc6285d9f44f9a673ea6602811ac2 schema:name doi
72 schema:value 10.1007/s00574-019-00138-z
73 rdf:type schema:PropertyValue
74 N70d1c8368f534aa7985a926ba1b86812 schema:name Springer Nature - SN SciGraph project
75 rdf:type schema:Organization
76 N967415d998dc424a989579b72717080e schema:name Department of Applied Mathematics, Imecc–Unicamp, 13083-859, Campinas, SP, Brazil
77 rdf:type schema:Organization
78 N98f38e321333485d9b392367966738dd rdf:first N534f1f0c76e04c289496ea16a51f8fda
79 rdf:rest Nb71cd8f3f1bb4a33b034ab6616f4dd20
80 Nb71cd8f3f1bb4a33b034ab6616f4dd20 rdf:first N4195765d1bfc43329a0588eaf73dd8f5
81 rdf:rest rdf:nil
82 sg:journal.1295198 schema:issn 0100-3569
83 1678-7714
84 schema:name Bulletin of the Brazilian Mathematical Society, New Series
85 rdf:type schema:Periodical
86 sg:pub.10.1007/bf01201355 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029669045
87 https://doi.org/10.1007/bf01201355
88 rdf:type schema:CreativeWork
89 sg:pub.10.1007/s40314-018-0717-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107347731
90 https://doi.org/10.1007/s40314-018-0717-0
91 rdf:type schema:CreativeWork
92 sg:pub.10.1155/2010/148102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022621887
93 https://doi.org/10.1155/2010/148102
94 rdf:type schema:CreativeWork
95 sg:pub.10.1186/1029-242x-2012-299 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027583512
96 https://doi.org/10.1186/1029-242x-2012-299
97 rdf:type schema:CreativeWork
98 sg:pub.10.1186/1029-242x-2013-549 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046281166
99 https://doi.org/10.1186/1029-242x-2013-549
100 rdf:type schema:CreativeWork
101 sg:pub.10.1186/1029-242x-2014-119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020578559
102 https://doi.org/10.1186/1029-242x-2014-119
103 rdf:type schema:CreativeWork
104 sg:pub.10.1186/s13660-015-0688-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051883481
105 https://doi.org/10.1186/s13660-015-0688-2
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1006/jmaa.1999.6618 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002700019
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1006/jmaa.2000.6977 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033345395
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/j.amc.2011.03.062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008834612
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/j.jmaa.2016.09.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016823766
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/j.mcm.2011.12.048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017348681
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/j.physa.2017.04.054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084932356
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1017/cbo9780511817106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098669357
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1090/proc/13488 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059345794
122 rdf:type schema:CreativeWork
123 https://doi.org/10.12785/msl/030301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064669662
124 rdf:type schema:CreativeWork
125 https://doi.org/10.15352/afa/1399900993 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067742034
126 rdf:type schema:CreativeWork
127 https://doi.org/10.2140/pjm.1961.11.39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069063005
128 rdf:type schema:CreativeWork
129 https://doi.org/10.22436/jnsa.010.02.22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083990863
130 rdf:type schema:CreativeWork
131 https://doi.org/10.2298/tsci151224222y schema:sameAs https://app.dimensions.ai/details/publication/pub.1046186481
132 rdf:type schema:CreativeWork
133 https://doi.org/10.2298/tsci161216326y schema:sameAs https://app.dimensions.ai/details/publication/pub.1069361907
134 rdf:type schema:CreativeWork
135 https://doi.org/10.28924/2291-8639-16-2018-83 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100183783
136 rdf:type schema:CreativeWork
137 https://doi.org/10.3934/math.2017.4.692 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099848817
138 rdf:type schema:CreativeWork
139 https://doi.org/10.3934/math.2018.1.131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101480293
140 rdf:type schema:CreativeWork
141 https://doi.org/10.4064/cm108-2-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072181855
142 rdf:type schema:CreativeWork
143 https://doi.org/10.7153/mia-2017-20-70 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092209222
144 rdf:type schema:CreativeWork
145 https://www.grid.ac/institutes/grid.20736.30 schema:alternateName Federal University of Paraná
146 schema:name Coordination of Civil Engineering, Technological Federal University of Paraná, 85053-525, Guarapuava, PR, Brazil
147 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...