Simulation and experimental study of direct spray type piezoelectric air pumps based on synthetic jet View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-30

AUTHORS

Cheng Liu, Yuchuan Zhu

ABSTRACT

In this paper, two direct spray type piezoelectric air pumps based on synthetic jet are developed for large flowrate electronics cooling applications. Pumps with single chamber and double chambers are developed, respectively. Corresponding simulation and experimental researches are carried out. Simulation analysis is carried out for resonant frequencies and modes of the piezoelectric vibrator and working process of the piezoelectric pump. Theoretical calculation is given for deformation amplitude distribution of the piezoelectric vibrator. The simulation and experimental results show that the first-order resonant frequency of the piezoelectric vibrator is about 1.1 kHz and deformation amplitude at the center of the piezoelectric vibrator can reach up to 440 μm. Excited by 150 Vpp, 2.85 kHz sinusoidal voltage signal, the maximum output flowrate of the pump with single chamber is 2.1 L/min. The maximum output flowrate of the pump with double chambers is 2.43 L/min, which increases by 15.7%. The synthetic jet based piezoelectric air pumps have significant improvements in output flowrate and response frequency compared with the conventional ones. Synthetic jet based piezoelectric air pump is a promising and feasible gas source for the electronics cooling system. More... »

PAGES

1-10

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00542-019-04417-z

DOI

http://dx.doi.org/10.1007/s00542-019-04417-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113143916


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Nanjing University of Aeronautics and Astronautics", 
          "id": "https://www.grid.ac/institutes/grid.64938.30", 
          "name": [
            "National Key Laboratory of Science and Technology on Helicopter Transmission, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Cheng", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanjing University of Aeronautics and Astronautics", 
          "id": "https://www.grid.ac/institutes/grid.64938.30", 
          "name": [
            "National Key Laboratory of Science and Technology on Helicopter Transmission, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhu", 
        "givenName": "Yuchuan", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s12206-016-0814-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000004833", 
          "https://doi.org/10.1007/s12206-016-0814-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12206-016-0814-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000004833", 
          "https://doi.org/10.1007/s12206-016-0814-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.enconman.2016.11.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000245669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/2374068x.2016.1147766", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002739072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00542-016-3029-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004597134", 
          "https://doi.org/10.1007/s00542-016-3029-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00542-016-3029-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004597134", 
          "https://doi.org/10.1007/s00542-016-3029-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2514/1.j052674", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010813238"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.expthermflusci.2013.02.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018653191"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12541-011-0046-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019289600", 
          "https://doi.org/10.1007/s12541-011-0046-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2016.06.094", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037353840"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2016.06.094", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037353840"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.sna.2016.10.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043688185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00542-014-2257-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044340774", 
          "https://doi.org/10.1007/s00542-014-2257-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00542-014-2278-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048299808", 
          "https://doi.org/10.1007/s00542-014-2278-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.869828", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058121979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.4028342", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062153653"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4028/www.scientific.net/amm.225.85", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071915928"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4985562", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085898422"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1045389x17733329", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092155963"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1045389x17733329", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092155963"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00542-017-3563-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092444775", 
          "https://doi.org/10.1007/s00542-017-3563-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1045389x18758181", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101431395"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1045389x18758181", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101431395"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.sna.2018.07.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105334761"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.sna.2018.07.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105683366"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-30", 
    "datePublishedReg": "2019-03-30", 
    "description": "In this paper, two direct spray type piezoelectric air pumps based on synthetic jet are developed for large flowrate electronics cooling applications. Pumps with single chamber and double chambers are developed, respectively. Corresponding simulation and experimental researches are carried out. Simulation analysis is carried out for resonant frequencies and modes of the piezoelectric vibrator and working process of the piezoelectric pump. Theoretical calculation is given for deformation amplitude distribution of the piezoelectric vibrator. The simulation and experimental results show that the first-order resonant frequency of the piezoelectric vibrator is about 1.1 kHz and deformation amplitude at the center of the piezoelectric vibrator can reach up to 440 \u03bcm. Excited by 150 Vpp, 2.85 kHz sinusoidal voltage signal, the maximum output flowrate of the pump with single chamber is 2.1 L/min. The maximum output flowrate of the pump with double chambers is 2.43 L/min, which increases by 15.7%. The synthetic jet based piezoelectric air pumps have significant improvements in output flowrate and response frequency compared with the conventional ones. Synthetic jet based piezoelectric air pump is a promising and feasible gas source for the electronics cooling system.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00542-019-04417-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1294787", 
        "issn": [
          "0946-7076", 
          "1432-1858"
        ], 
        "name": "Microsystem Technologies", 
        "type": "Periodical"
      }
    ], 
    "name": "Simulation and experimental study of direct spray type piezoelectric air pumps based on synthetic jet", 
    "pagination": "1-10", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b1a2e3026e43c59a12d1612ee9d97b372f1358bf76524358c1074599ad47d40e"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00542-019-04417-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113143916"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00542-019-04417-z", 
      "https://app.dimensions.ai/details/publication/pub.1113143916"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46777_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00542-019-04417-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00542-019-04417-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00542-019-04417-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00542-019-04417-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00542-019-04417-z'


 

This table displays all metadata directly associated to this object as RDF triples.

126 TRIPLES      21 PREDICATES      44 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00542-019-04417-z schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Ne732016dd53a42c0a8c9212ed85c4f72
4 schema:citation sg:pub.10.1007/s00542-014-2257-x
5 sg:pub.10.1007/s00542-014-2278-5
6 sg:pub.10.1007/s00542-016-3029-6
7 sg:pub.10.1007/s00542-017-3563-x
8 sg:pub.10.1007/s12206-016-0814-1
9 sg:pub.10.1007/s12541-011-0046-3
10 https://doi.org/10.1016/j.applthermaleng.2016.06.094
11 https://doi.org/10.1016/j.enconman.2016.11.034
12 https://doi.org/10.1016/j.expthermflusci.2013.02.016
13 https://doi.org/10.1016/j.sna.2016.10.010
14 https://doi.org/10.1016/j.sna.2018.07.007
15 https://doi.org/10.1016/j.sna.2018.07.029
16 https://doi.org/10.1063/1.4985562
17 https://doi.org/10.1063/1.869828
18 https://doi.org/10.1080/2374068x.2016.1147766
19 https://doi.org/10.1115/1.4028342
20 https://doi.org/10.1177/1045389x17733329
21 https://doi.org/10.1177/1045389x18758181
22 https://doi.org/10.2514/1.j052674
23 https://doi.org/10.4028/www.scientific.net/amm.225.85
24 schema:datePublished 2019-03-30
25 schema:datePublishedReg 2019-03-30
26 schema:description In this paper, two direct spray type piezoelectric air pumps based on synthetic jet are developed for large flowrate electronics cooling applications. Pumps with single chamber and double chambers are developed, respectively. Corresponding simulation and experimental researches are carried out. Simulation analysis is carried out for resonant frequencies and modes of the piezoelectric vibrator and working process of the piezoelectric pump. Theoretical calculation is given for deformation amplitude distribution of the piezoelectric vibrator. The simulation and experimental results show that the first-order resonant frequency of the piezoelectric vibrator is about 1.1 kHz and deformation amplitude at the center of the piezoelectric vibrator can reach up to 440 μm. Excited by 150 Vpp, 2.85 kHz sinusoidal voltage signal, the maximum output flowrate of the pump with single chamber is 2.1 L/min. The maximum output flowrate of the pump with double chambers is 2.43 L/min, which increases by 15.7%. The synthetic jet based piezoelectric air pumps have significant improvements in output flowrate and response frequency compared with the conventional ones. Synthetic jet based piezoelectric air pump is a promising and feasible gas source for the electronics cooling system.
27 schema:genre research_article
28 schema:inLanguage en
29 schema:isAccessibleForFree false
30 schema:isPartOf sg:journal.1294787
31 schema:name Simulation and experimental study of direct spray type piezoelectric air pumps based on synthetic jet
32 schema:pagination 1-10
33 schema:productId N12da51223649423797ae5b57b2325878
34 N6e25fb43f1ed4c179d380babf2cea6a8
35 Nf2d52fdfddb44657a4aa96b0e5692a6b
36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113143916
37 https://doi.org/10.1007/s00542-019-04417-z
38 schema:sdDatePublished 2019-04-11T13:36
39 schema:sdLicense https://scigraph.springernature.com/explorer/license/
40 schema:sdPublisher N6c1b1468e1e5453a81f2218553607d6e
41 schema:url https://link.springer.com/10.1007%2Fs00542-019-04417-z
42 sgo:license sg:explorer/license/
43 sgo:sdDataset articles
44 rdf:type schema:ScholarlyArticle
45 N12da51223649423797ae5b57b2325878 schema:name dimensions_id
46 schema:value pub.1113143916
47 rdf:type schema:PropertyValue
48 N6c1b1468e1e5453a81f2218553607d6e schema:name Springer Nature - SN SciGraph project
49 rdf:type schema:Organization
50 N6e25fb43f1ed4c179d380babf2cea6a8 schema:name doi
51 schema:value 10.1007/s00542-019-04417-z
52 rdf:type schema:PropertyValue
53 N7d66bc60aa034b0a97c9b96c23af4f21 schema:affiliation https://www.grid.ac/institutes/grid.64938.30
54 schema:familyName Liu
55 schema:givenName Cheng
56 rdf:type schema:Person
57 Na2c89795f1d843b0bb377f6333610f03 rdf:first Nd4a2b5fe5886422ebb8a4009c7833e3b
58 rdf:rest rdf:nil
59 Nd4a2b5fe5886422ebb8a4009c7833e3b schema:affiliation https://www.grid.ac/institutes/grid.64938.30
60 schema:familyName Zhu
61 schema:givenName Yuchuan
62 rdf:type schema:Person
63 Ne732016dd53a42c0a8c9212ed85c4f72 rdf:first N7d66bc60aa034b0a97c9b96c23af4f21
64 rdf:rest Na2c89795f1d843b0bb377f6333610f03
65 Nf2d52fdfddb44657a4aa96b0e5692a6b schema:name readcube_id
66 schema:value b1a2e3026e43c59a12d1612ee9d97b372f1358bf76524358c1074599ad47d40e
67 rdf:type schema:PropertyValue
68 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
69 schema:name Engineering
70 rdf:type schema:DefinedTerm
71 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
72 schema:name Materials Engineering
73 rdf:type schema:DefinedTerm
74 sg:journal.1294787 schema:issn 0946-7076
75 1432-1858
76 schema:name Microsystem Technologies
77 rdf:type schema:Periodical
78 sg:pub.10.1007/s00542-014-2257-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1044340774
79 https://doi.org/10.1007/s00542-014-2257-x
80 rdf:type schema:CreativeWork
81 sg:pub.10.1007/s00542-014-2278-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048299808
82 https://doi.org/10.1007/s00542-014-2278-5
83 rdf:type schema:CreativeWork
84 sg:pub.10.1007/s00542-016-3029-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004597134
85 https://doi.org/10.1007/s00542-016-3029-6
86 rdf:type schema:CreativeWork
87 sg:pub.10.1007/s00542-017-3563-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1092444775
88 https://doi.org/10.1007/s00542-017-3563-x
89 rdf:type schema:CreativeWork
90 sg:pub.10.1007/s12206-016-0814-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000004833
91 https://doi.org/10.1007/s12206-016-0814-1
92 rdf:type schema:CreativeWork
93 sg:pub.10.1007/s12541-011-0046-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019289600
94 https://doi.org/10.1007/s12541-011-0046-3
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1016/j.applthermaleng.2016.06.094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037353840
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1016/j.enconman.2016.11.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000245669
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1016/j.expthermflusci.2013.02.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018653191
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1016/j.sna.2016.10.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043688185
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1016/j.sna.2018.07.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105334761
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1016/j.sna.2018.07.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105683366
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1063/1.4985562 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085898422
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1063/1.869828 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058121979
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1080/2374068x.2016.1147766 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002739072
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1115/1.4028342 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062153653
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1177/1045389x17733329 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092155963
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1177/1045389x18758181 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101431395
119 rdf:type schema:CreativeWork
120 https://doi.org/10.2514/1.j052674 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010813238
121 rdf:type schema:CreativeWork
122 https://doi.org/10.4028/www.scientific.net/amm.225.85 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071915928
123 rdf:type schema:CreativeWork
124 https://www.grid.ac/institutes/grid.64938.30 schema:alternateName Nanjing University of Aeronautics and Astronautics
125 schema:name National Key Laboratory of Science and Technology on Helicopter Transmission, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, China
126 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...