An evaluation of optical profilometry techniques for CMUT characterization View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-12

AUTHORS

Aref Bakhtazad, Sazzadur Chowdhury

ABSTRACT

Accurate characterization of thin films and geometric features including the cavities during and after the fabrication process is crucial for proper CMUT operation, reliability, consistent array operation, and improved yield. Three different optical profilometry techniques: white light interferometry, laser confocal microscopy, and structural grid illumination microscopy have been reviewed in this paper with a focus on characterization of various thin films and geometric features during different CMUT fabrication stages and post processing. The relative merits of each technique have been investigated experimentally in the context of CMUT fabrication for better characterization and process development. The surface roughness and diaphragm deformation results have also been compared with AFM data. From the review, it appears that characterization needs of CMUTs are unique and a combination of complex diversified characterization tools is necessary to generate sufficient data for design verification and functional optimization. More... »

PAGES

3627-3642

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00542-019-04377-4

DOI

http://dx.doi.org/10.1007/s00542-019-04377-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112703113


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Technology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1005", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Communications Technologies", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1007", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Nanotechnology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Electrical and Computer Engineering Department, University of Windsor, N9B 3P4, Windsor, ON, Canada", 
          "id": "http://www.grid.ac/institutes/grid.267455.7", 
          "name": [
            "Electrical and Computer Engineering Department, University of Windsor, N9B 3P4, Windsor, ON, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bakhtazad", 
        "givenName": "Aref", 
        "id": "sg:person.015645706423.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015645706423.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Electrical and Computer Engineering Department, University of Windsor, N9B 3P4, Windsor, ON, Canada", 
          "id": "http://www.grid.ac/institutes/grid.267455.7", 
          "name": [
            "Electrical and Computer Engineering Department, University of Windsor, N9B 3P4, Windsor, ON, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chowdhury", 
        "givenName": "Sazzadur", 
        "id": "sg:person.014243226541.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014243226541.54"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/srep10267", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044412193", 
          "https://doi.org/10.1038/srep10267"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00542-016-3225-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023277658", 
          "https://doi.org/10.1007/s00542-016-3225-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-12012-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014311083", 
          "https://doi.org/10.1007/978-3-642-12012-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00542-012-1500-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019202597", 
          "https://doi.org/10.1007/s00542-012-1500-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nprot.2011.407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045004690", 
          "https://doi.org/10.1038/nprot.2011.407"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-12", 
    "datePublishedReg": "2019-03-12", 
    "description": "Accurate characterization of thin films and geometric features including the cavities during and after the fabrication process is crucial for proper CMUT operation, reliability, consistent array operation, and improved yield. Three different optical profilometry techniques: white light interferometry, laser confocal microscopy, and structural grid illumination microscopy have been reviewed in this paper with a focus on characterization of various thin films and geometric features during different CMUT fabrication stages and post processing. The relative merits of each technique have been investigated experimentally in the context of CMUT fabrication for better characterization and process development. The surface roughness and diaphragm deformation results have also been compared with AFM data. From the review, it appears that characterization needs of CMUTs are unique and a combination of complex diversified characterization tools is necessary to generate sufficient data for design verification and functional optimization.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00542-019-04377-4", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1294787", 
        "issn": [
          "0946-7076", 
          "1432-1858"
        ], 
        "name": "Microsystem Technologies", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "25"
      }
    ], 
    "keywords": [
      "optical profilometry techniques", 
      "thin films", 
      "profilometry technique", 
      "white light interferometry", 
      "CMUT operation", 
      "CMUT fabrication", 
      "fabrication process", 
      "fabrication stage", 
      "deformation results", 
      "surface roughness", 
      "light interferometry", 
      "characterization needs", 
      "geometric features", 
      "process development", 
      "characterization tools", 
      "design verification", 
      "AFM data", 
      "illumination microscopy", 
      "array operations", 
      "films", 
      "accurate characterization", 
      "microscopy", 
      "improved yield", 
      "CMUT", 
      "operation", 
      "fabrication", 
      "roughness", 
      "characterization", 
      "functional optimization", 
      "laser confocal microscopy", 
      "technique", 
      "interferometry", 
      "confocal microscopy", 
      "optimization", 
      "reliability", 
      "verification", 
      "merits", 
      "relative merits", 
      "processing", 
      "better characterization", 
      "process", 
      "cavity", 
      "yield", 
      "features", 
      "results", 
      "paper", 
      "combination", 
      "data", 
      "tool", 
      "evaluation", 
      "stage", 
      "sufficient data", 
      "development", 
      "focus", 
      "need", 
      "review", 
      "context", 
      "proper CMUT operation", 
      "consistent array operation", 
      "different optical profilometry techniques", 
      "structural grid illumination microscopy", 
      "grid illumination microscopy", 
      "different CMUT fabrication stages", 
      "CMUT fabrication stages", 
      "diaphragm deformation results", 
      "complex diversified characterization tools", 
      "diversified characterization tools", 
      "CMUT characterization"
    ], 
    "name": "An evaluation of optical profilometry techniques for CMUT characterization", 
    "pagination": "3627-3642", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112703113"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00542-019-04377-4"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00542-019-04377-4", 
      "https://app.dimensions.ai/details/publication/pub.1112703113"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:42", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_798.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00542-019-04377-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00542-019-04377-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00542-019-04377-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00542-019-04377-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00542-019-04377-4'


 

This table displays all metadata directly associated to this object as RDF triples.

157 TRIPLES      22 PREDICATES      99 URIs      85 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00542-019-04377-4 schema:about anzsrc-for:10
2 anzsrc-for:1005
3 anzsrc-for:1007
4 schema:author Nb7a04775485b4a17b11346f21cad2855
5 schema:citation sg:pub.10.1007/978-3-642-12012-1
6 sg:pub.10.1007/s00542-012-1500-6
7 sg:pub.10.1007/s00542-016-3225-4
8 sg:pub.10.1038/nprot.2011.407
9 sg:pub.10.1038/srep10267
10 schema:datePublished 2019-03-12
11 schema:datePublishedReg 2019-03-12
12 schema:description Accurate characterization of thin films and geometric features including the cavities during and after the fabrication process is crucial for proper CMUT operation, reliability, consistent array operation, and improved yield. Three different optical profilometry techniques: white light interferometry, laser confocal microscopy, and structural grid illumination microscopy have been reviewed in this paper with a focus on characterization of various thin films and geometric features during different CMUT fabrication stages and post processing. The relative merits of each technique have been investigated experimentally in the context of CMUT fabrication for better characterization and process development. The surface roughness and diaphragm deformation results have also been compared with AFM data. From the review, it appears that characterization needs of CMUTs are unique and a combination of complex diversified characterization tools is necessary to generate sufficient data for design verification and functional optimization.
13 schema:genre article
14 schema:inLanguage en
15 schema:isAccessibleForFree false
16 schema:isPartOf N1925eaeda18d45c7b5710b4f101e5c62
17 Nd3ca69c9346c4287b1e8cfd5c2278c20
18 sg:journal.1294787
19 schema:keywords AFM data
20 CMUT
21 CMUT characterization
22 CMUT fabrication
23 CMUT fabrication stages
24 CMUT operation
25 accurate characterization
26 array operations
27 better characterization
28 cavity
29 characterization
30 characterization needs
31 characterization tools
32 combination
33 complex diversified characterization tools
34 confocal microscopy
35 consistent array operation
36 context
37 data
38 deformation results
39 design verification
40 development
41 diaphragm deformation results
42 different CMUT fabrication stages
43 different optical profilometry techniques
44 diversified characterization tools
45 evaluation
46 fabrication
47 fabrication process
48 fabrication stage
49 features
50 films
51 focus
52 functional optimization
53 geometric features
54 grid illumination microscopy
55 illumination microscopy
56 improved yield
57 interferometry
58 laser confocal microscopy
59 light interferometry
60 merits
61 microscopy
62 need
63 operation
64 optical profilometry techniques
65 optimization
66 paper
67 process
68 process development
69 processing
70 profilometry technique
71 proper CMUT operation
72 relative merits
73 reliability
74 results
75 review
76 roughness
77 stage
78 structural grid illumination microscopy
79 sufficient data
80 surface roughness
81 technique
82 thin films
83 tool
84 verification
85 white light interferometry
86 yield
87 schema:name An evaluation of optical profilometry techniques for CMUT characterization
88 schema:pagination 3627-3642
89 schema:productId N3a8cb6ad17f8471fbc67889f61c14a7c
90 Nb77d68065293441893d7b294412fa82d
91 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112703113
92 https://doi.org/10.1007/s00542-019-04377-4
93 schema:sdDatePublished 2021-12-01T19:42
94 schema:sdLicense https://scigraph.springernature.com/explorer/license/
95 schema:sdPublisher N153e5b3d61014b1fb38d168c1b54c675
96 schema:url https://doi.org/10.1007/s00542-019-04377-4
97 sgo:license sg:explorer/license/
98 sgo:sdDataset articles
99 rdf:type schema:ScholarlyArticle
100 N153e5b3d61014b1fb38d168c1b54c675 schema:name Springer Nature - SN SciGraph project
101 rdf:type schema:Organization
102 N1925eaeda18d45c7b5710b4f101e5c62 schema:volumeNumber 25
103 rdf:type schema:PublicationVolume
104 N3a8cb6ad17f8471fbc67889f61c14a7c schema:name doi
105 schema:value 10.1007/s00542-019-04377-4
106 rdf:type schema:PropertyValue
107 N7601dac3e53d4e579ee4795fdd8c96b5 rdf:first sg:person.014243226541.54
108 rdf:rest rdf:nil
109 Nb77d68065293441893d7b294412fa82d schema:name dimensions_id
110 schema:value pub.1112703113
111 rdf:type schema:PropertyValue
112 Nb7a04775485b4a17b11346f21cad2855 rdf:first sg:person.015645706423.40
113 rdf:rest N7601dac3e53d4e579ee4795fdd8c96b5
114 Nd3ca69c9346c4287b1e8cfd5c2278c20 schema:issueNumber 9
115 rdf:type schema:PublicationIssue
116 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
117 schema:name Technology
118 rdf:type schema:DefinedTerm
119 anzsrc-for:1005 schema:inDefinedTermSet anzsrc-for:
120 schema:name Communications Technologies
121 rdf:type schema:DefinedTerm
122 anzsrc-for:1007 schema:inDefinedTermSet anzsrc-for:
123 schema:name Nanotechnology
124 rdf:type schema:DefinedTerm
125 sg:journal.1294787 schema:issn 0946-7076
126 1432-1858
127 schema:name Microsystem Technologies
128 schema:publisher Springer Nature
129 rdf:type schema:Periodical
130 sg:person.014243226541.54 schema:affiliation grid-institutes:grid.267455.7
131 schema:familyName Chowdhury
132 schema:givenName Sazzadur
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014243226541.54
134 rdf:type schema:Person
135 sg:person.015645706423.40 schema:affiliation grid-institutes:grid.267455.7
136 schema:familyName Bakhtazad
137 schema:givenName Aref
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015645706423.40
139 rdf:type schema:Person
140 sg:pub.10.1007/978-3-642-12012-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014311083
141 https://doi.org/10.1007/978-3-642-12012-1
142 rdf:type schema:CreativeWork
143 sg:pub.10.1007/s00542-012-1500-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019202597
144 https://doi.org/10.1007/s00542-012-1500-6
145 rdf:type schema:CreativeWork
146 sg:pub.10.1007/s00542-016-3225-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023277658
147 https://doi.org/10.1007/s00542-016-3225-4
148 rdf:type schema:CreativeWork
149 sg:pub.10.1038/nprot.2011.407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045004690
150 https://doi.org/10.1038/nprot.2011.407
151 rdf:type schema:CreativeWork
152 sg:pub.10.1038/srep10267 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044412193
153 https://doi.org/10.1038/srep10267
154 rdf:type schema:CreativeWork
155 grid-institutes:grid.267455.7 schema:alternateName Electrical and Computer Engineering Department, University of Windsor, N9B 3P4, Windsor, ON, Canada
156 schema:name Electrical and Computer Engineering Department, University of Windsor, N9B 3P4, Windsor, ON, Canada
157 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...