Moving shot, an affordable and high-throughput setup for direct imaging of fast-moving microdroplets View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-01-02

AUTHORS

Ali Mehrnezhad, Tae Joon Kwak, Sunkook Kim, Woo-Jin Chang, Kidong Park

ABSTRACT

Droplet microfluidics have a great potential in chemical and biomedical applications, due to their high throughput, versatility, and massive parallelism. To enhance their throughput, many devices based on the droplet microfluidics are using a flow-through configuration, in which the droplets are generated, transported, and analyzed in a continuous stream with a high velocity. Direct imaging of moving droplets is often necessary to characterize the spatiotemporal dynamics of the chemical reaction and physical process in the droplets. However, due to the motion blur caused by the movement of the droplets during exposure, an expensive high-speed camera is required for clear imaging, which is cost prohibitive in many applications. In this paper, we are presenting ‘Moving shot’ to demonstrate direct imaging of fast-moving droplets in microfluidic channels at an affordable cost. A microfluidic device is translated at the same velocity but in the opposite direction of moving droplets in it, so that the droplets are stationary with respect to the objective lens. With this approach, we can image fluorescent droplets moving at 0.34 cm s−1 with an exposure time up to 2 s without motion blur. We strongly believe that the proposed technique can enable cost-effective and high-throughput imaging of fast-moving droplets in a microfluidic channel. More... »

PAGES

1-7

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00542-018-4272-9

DOI

http://dx.doi.org/10.1007/s00542-018-4272-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111057498


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Louisiana State University", 
          "id": "https://www.grid.ac/institutes/grid.64337.35", 
          "name": [
            "Division of Electrical and Computer Engineering, Louisiana State University, 70803, Baton Rouge, LA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mehrnezhad", 
        "givenName": "Ali", 
        "id": "sg:person.01243352347.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01243352347.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Wisconsin\u2013Milwaukee", 
          "id": "https://www.grid.ac/institutes/grid.267468.9", 
          "name": [
            "Mechanical Engineering Department, University of Wisconsin-Milwaukee, 53211, Milwaukee, WI, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kwak", 
        "givenName": "Tae Joon", 
        "id": "sg:person.01022053375.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01022053375.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sungkyunkwan University", 
          "id": "https://www.grid.ac/institutes/grid.264381.a", 
          "name": [
            "School of Advanced Materials Science and Engineering, Sungkyunkwan University, 16419, Suwon, Kyunggi, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Sunkook", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Wisconsin\u2013Milwaukee", 
          "id": "https://www.grid.ac/institutes/grid.267468.9", 
          "name": [
            "Mechanical Engineering Department, University of Wisconsin-Milwaukee, 53211, Milwaukee, WI, USA", 
            "School of Freshwater Sciences, University of Wisconsin-Milwaukee, 53204, Milwaukee, WI, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chang", 
        "givenName": "Woo-Jin", 
        "id": "sg:person.01233213336.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01233213336.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Louisiana State University", 
          "id": "https://www.grid.ac/institutes/grid.64337.35", 
          "name": [
            "Division of Electrical and Computer Engineering, Louisiana State University, 70803, Baton Rouge, LA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Park", 
        "givenName": "Kidong", 
        "id": "sg:person.01072665403.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01072665403.30"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/ncomms4777", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000233178", 
          "https://doi.org/10.1038/ncomms4777"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cr300337x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005132115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aca.2013.04.064", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006481385"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/molecules21070881", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013130659"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nprot.2013.046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014318631", 
          "https://doi.org/10.1038/nprot.2013.046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nchem.1753", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017620235", 
          "https://doi.org/10.1038/nchem.1753"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nprot.2016.154", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019900861", 
          "https://doi.org/10.1038/nprot.2016.154"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac400257c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021390649"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c4lc00378k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024124511"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/2211068215581349", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025603280"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/2211068215581349", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025603280"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.trac.2016.05.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029362660"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/2211068216677204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031949091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/2211068216677204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031949091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4943126", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033405460"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c4an01209g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037780767"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c4lc00456f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037974328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1087057113510401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038566349"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1087057113510401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038566349"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.copbio.2016.02.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038925813"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.copbio.2016.02.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038925813"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.copbio.2016.02.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038925813"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.copbio.2016.02.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038925813"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c5lc00083a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048603694"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c5lc00614g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048886464"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0166068", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053385934"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.analchem.6b00176", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055079602"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.analchem.6b04520", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055080791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.112.028301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060762418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.112.028301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060762418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1556/jfc-d-14-00038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067887458", 
          "https://doi.org/10.1556/jfc-d-14-00038"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1556/jfc-d-14-00038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067887458", 
          "https://doi.org/10.1556/jfc-d-14-00038"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.chemrev.6b00848", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085617121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c7lc00005g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085932662"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pld3.11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091924504"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40588-018-0105-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105943861", 
          "https://doi.org/10.1007/s40588-018-0105-y"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-01-02", 
    "datePublishedReg": "2019-01-02", 
    "description": "Droplet microfluidics have a great potential in chemical and biomedical applications, due to their high throughput, versatility, and massive parallelism. To enhance their throughput, many devices based on the droplet microfluidics are using a flow-through configuration, in which the droplets are generated, transported, and analyzed in a continuous stream with a high velocity. Direct imaging of moving droplets is often necessary to characterize the spatiotemporal dynamics of the chemical reaction and physical process in the droplets. However, due to the motion blur caused by the movement of the droplets during exposure, an expensive high-speed camera is required for clear imaging, which is cost prohibitive in many applications. In this paper, we are presenting \u2018Moving shot\u2019 to demonstrate direct imaging of fast-moving droplets in microfluidic channels at an affordable cost. A microfluidic device is translated at the same velocity but in the opposite direction of moving droplets in it, so that the droplets are stationary with respect to the objective lens. With this approach, we can image fluorescent droplets moving at 0.34 cm s\u22121 with an exposure time up to 2 s without motion blur. We strongly believe that the proposed technique can enable cost-effective and high-throughput imaging of fast-moving droplets in a microfluidic channel.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00542-018-4272-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1294787", 
        "issn": [
          "0946-7076", 
          "1432-1858"
        ], 
        "name": "Microsystem Technologies", 
        "type": "Periodical"
      }
    ], 
    "name": "Moving shot, an affordable and high-throughput setup for direct imaging of fast-moving microdroplets", 
    "pagination": "1-7", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "44759163cf48a3481fc6d2c7a06130845fc7aa23069af98bea59937577874434"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00542-018-4272-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111057498"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00542-018-4272-9", 
      "https://app.dimensions.ai/details/publication/pub.1111057498"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:33", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000310_0000000310/records_90740_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00542-018-4272-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00542-018-4272-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00542-018-4272-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00542-018-4272-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00542-018-4272-9'


 

This table displays all metadata directly associated to this object as RDF triples.

179 TRIPLES      21 PREDICATES      52 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00542-018-4272-9 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author Nfb1c83f8b6ea45a3a85473cf0e46f597
4 schema:citation sg:pub.10.1007/s40588-018-0105-y
5 sg:pub.10.1038/nchem.1753
6 sg:pub.10.1038/ncomms4777
7 sg:pub.10.1038/nprot.2013.046
8 sg:pub.10.1038/nprot.2016.154
9 sg:pub.10.1556/jfc-d-14-00038
10 https://doi.org/10.1002/pld3.11
11 https://doi.org/10.1016/j.aca.2013.04.064
12 https://doi.org/10.1016/j.copbio.2016.02.015
13 https://doi.org/10.1016/j.trac.2016.05.019
14 https://doi.org/10.1021/ac400257c
15 https://doi.org/10.1021/acs.analchem.6b00176
16 https://doi.org/10.1021/acs.analchem.6b04520
17 https://doi.org/10.1021/acs.chemrev.6b00848
18 https://doi.org/10.1021/cr300337x
19 https://doi.org/10.1039/c4an01209g
20 https://doi.org/10.1039/c4lc00378k
21 https://doi.org/10.1039/c4lc00456f
22 https://doi.org/10.1039/c5lc00083a
23 https://doi.org/10.1039/c5lc00614g
24 https://doi.org/10.1039/c7lc00005g
25 https://doi.org/10.1063/1.4943126
26 https://doi.org/10.1103/physrevlett.112.028301
27 https://doi.org/10.1177/1087057113510401
28 https://doi.org/10.1177/2211068215581349
29 https://doi.org/10.1177/2211068216677204
30 https://doi.org/10.1371/journal.pone.0166068
31 https://doi.org/10.3390/molecules21070881
32 schema:datePublished 2019-01-02
33 schema:datePublishedReg 2019-01-02
34 schema:description Droplet microfluidics have a great potential in chemical and biomedical applications, due to their high throughput, versatility, and massive parallelism. To enhance their throughput, many devices based on the droplet microfluidics are using a flow-through configuration, in which the droplets are generated, transported, and analyzed in a continuous stream with a high velocity. Direct imaging of moving droplets is often necessary to characterize the spatiotemporal dynamics of the chemical reaction and physical process in the droplets. However, due to the motion blur caused by the movement of the droplets during exposure, an expensive high-speed camera is required for clear imaging, which is cost prohibitive in many applications. In this paper, we are presenting ‘Moving shot’ to demonstrate direct imaging of fast-moving droplets in microfluidic channels at an affordable cost. A microfluidic device is translated at the same velocity but in the opposite direction of moving droplets in it, so that the droplets are stationary with respect to the objective lens. With this approach, we can image fluorescent droplets moving at 0.34 cm s−1 with an exposure time up to 2 s without motion blur. We strongly believe that the proposed technique can enable cost-effective and high-throughput imaging of fast-moving droplets in a microfluidic channel.
35 schema:genre research_article
36 schema:inLanguage en
37 schema:isAccessibleForFree false
38 schema:isPartOf sg:journal.1294787
39 schema:name Moving shot, an affordable and high-throughput setup for direct imaging of fast-moving microdroplets
40 schema:pagination 1-7
41 schema:productId N46d6c38198a7411ba6ff7c35d0bddf0b
42 N5e4e4bc904ec458c813c15a66e29d7fa
43 Nd0872ac966b840b1bd70136297085a16
44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111057498
45 https://doi.org/10.1007/s00542-018-4272-9
46 schema:sdDatePublished 2019-04-11T08:33
47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
48 schema:sdPublisher Nb5aae6cd3ed849e7b36f7b29914bde1d
49 schema:url https://link.springer.com/10.1007%2Fs00542-018-4272-9
50 sgo:license sg:explorer/license/
51 sgo:sdDataset articles
52 rdf:type schema:ScholarlyArticle
53 N23e406fb932a40e89e4137c1098f40c1 rdf:first sg:person.01072665403.30
54 rdf:rest rdf:nil
55 N46d6c38198a7411ba6ff7c35d0bddf0b schema:name doi
56 schema:value 10.1007/s00542-018-4272-9
57 rdf:type schema:PropertyValue
58 N5e4e4bc904ec458c813c15a66e29d7fa schema:name dimensions_id
59 schema:value pub.1111057498
60 rdf:type schema:PropertyValue
61 N648f0db3ad6042448ea78e69e7e33a70 schema:affiliation https://www.grid.ac/institutes/grid.264381.a
62 schema:familyName Kim
63 schema:givenName Sunkook
64 rdf:type schema:Person
65 N78265172a7ca4a10ba77b9077cd3a6e7 rdf:first sg:person.01233213336.41
66 rdf:rest N23e406fb932a40e89e4137c1098f40c1
67 Nb5aae6cd3ed849e7b36f7b29914bde1d schema:name Springer Nature - SN SciGraph project
68 rdf:type schema:Organization
69 Nd0872ac966b840b1bd70136297085a16 schema:name readcube_id
70 schema:value 44759163cf48a3481fc6d2c7a06130845fc7aa23069af98bea59937577874434
71 rdf:type schema:PropertyValue
72 Nd30321ef161c44cca5e986fadbde49c7 rdf:first N648f0db3ad6042448ea78e69e7e33a70
73 rdf:rest N78265172a7ca4a10ba77b9077cd3a6e7
74 Nf315c521c82e4776ac51ea45e711bb3b rdf:first sg:person.01022053375.23
75 rdf:rest Nd30321ef161c44cca5e986fadbde49c7
76 Nfb1c83f8b6ea45a3a85473cf0e46f597 rdf:first sg:person.01243352347.81
77 rdf:rest Nf315c521c82e4776ac51ea45e711bb3b
78 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
79 schema:name Engineering
80 rdf:type schema:DefinedTerm
81 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
82 schema:name Interdisciplinary Engineering
83 rdf:type schema:DefinedTerm
84 sg:journal.1294787 schema:issn 0946-7076
85 1432-1858
86 schema:name Microsystem Technologies
87 rdf:type schema:Periodical
88 sg:person.01022053375.23 schema:affiliation https://www.grid.ac/institutes/grid.267468.9
89 schema:familyName Kwak
90 schema:givenName Tae Joon
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01022053375.23
92 rdf:type schema:Person
93 sg:person.01072665403.30 schema:affiliation https://www.grid.ac/institutes/grid.64337.35
94 schema:familyName Park
95 schema:givenName Kidong
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01072665403.30
97 rdf:type schema:Person
98 sg:person.01233213336.41 schema:affiliation https://www.grid.ac/institutes/grid.267468.9
99 schema:familyName Chang
100 schema:givenName Woo-Jin
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01233213336.41
102 rdf:type schema:Person
103 sg:person.01243352347.81 schema:affiliation https://www.grid.ac/institutes/grid.64337.35
104 schema:familyName Mehrnezhad
105 schema:givenName Ali
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01243352347.81
107 rdf:type schema:Person
108 sg:pub.10.1007/s40588-018-0105-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1105943861
109 https://doi.org/10.1007/s40588-018-0105-y
110 rdf:type schema:CreativeWork
111 sg:pub.10.1038/nchem.1753 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017620235
112 https://doi.org/10.1038/nchem.1753
113 rdf:type schema:CreativeWork
114 sg:pub.10.1038/ncomms4777 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000233178
115 https://doi.org/10.1038/ncomms4777
116 rdf:type schema:CreativeWork
117 sg:pub.10.1038/nprot.2013.046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014318631
118 https://doi.org/10.1038/nprot.2013.046
119 rdf:type schema:CreativeWork
120 sg:pub.10.1038/nprot.2016.154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019900861
121 https://doi.org/10.1038/nprot.2016.154
122 rdf:type schema:CreativeWork
123 sg:pub.10.1556/jfc-d-14-00038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067887458
124 https://doi.org/10.1556/jfc-d-14-00038
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1002/pld3.11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091924504
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/j.aca.2013.04.064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006481385
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.copbio.2016.02.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038925813
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.trac.2016.05.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029362660
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1021/ac400257c schema:sameAs https://app.dimensions.ai/details/publication/pub.1021390649
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1021/acs.analchem.6b00176 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055079602
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1021/acs.analchem.6b04520 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055080791
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1021/acs.chemrev.6b00848 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085617121
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1021/cr300337x schema:sameAs https://app.dimensions.ai/details/publication/pub.1005132115
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1039/c4an01209g schema:sameAs https://app.dimensions.ai/details/publication/pub.1037780767
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1039/c4lc00378k schema:sameAs https://app.dimensions.ai/details/publication/pub.1024124511
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1039/c4lc00456f schema:sameAs https://app.dimensions.ai/details/publication/pub.1037974328
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1039/c5lc00083a schema:sameAs https://app.dimensions.ai/details/publication/pub.1048603694
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1039/c5lc00614g schema:sameAs https://app.dimensions.ai/details/publication/pub.1048886464
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1039/c7lc00005g schema:sameAs https://app.dimensions.ai/details/publication/pub.1085932662
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1063/1.4943126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033405460
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1103/physrevlett.112.028301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060762418
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1177/1087057113510401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038566349
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1177/2211068215581349 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025603280
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1177/2211068216677204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031949091
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1371/journal.pone.0166068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053385934
167 rdf:type schema:CreativeWork
168 https://doi.org/10.3390/molecules21070881 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013130659
169 rdf:type schema:CreativeWork
170 https://www.grid.ac/institutes/grid.264381.a schema:alternateName Sungkyunkwan University
171 schema:name School of Advanced Materials Science and Engineering, Sungkyunkwan University, 16419, Suwon, Kyunggi, Republic of Korea
172 rdf:type schema:Organization
173 https://www.grid.ac/institutes/grid.267468.9 schema:alternateName University of Wisconsin–Milwaukee
174 schema:name Mechanical Engineering Department, University of Wisconsin-Milwaukee, 53211, Milwaukee, WI, USA
175 School of Freshwater Sciences, University of Wisconsin-Milwaukee, 53204, Milwaukee, WI, USA
176 rdf:type schema:Organization
177 https://www.grid.ac/institutes/grid.64337.35 schema:alternateName Louisiana State University
178 schema:name Division of Electrical and Computer Engineering, Louisiana State University, 70803, Baton Rouge, LA, USA
179 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...