Effect of various masked patterned tools during micro-electrochemical texturing View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

S. Kunar, B. Bhattacharyya

ABSTRACT

Micromachining technology plays an important role for enhancing the interfacial properties of surface texture by precisely controlling the shape and size of textured surfaces. Maskless micro-electrochemical texturing is a unique method for the generation of surface textures using different masked patterned tools with good shape and size. Fabrication of surface textures depends on suitable masked patterned tools, which are used in maskless micro-electrochemical texturing process. This article presents the effect and capability of six types of masked patterned tools with AZ4903, AZ4620, AZ1415H, synthetic prolite enamel, PMMA (Polymethyl methacrylate) and SU-8 2150 masks for the generation of textured samples utilizing developed experimental setup of maskless micro-electrochemical texturing. AZ4903, AZ4620, AZ1415H, synthetic prolite enamel and SU-8 2150 masked tools are used for fabrication of micro circular patterns and PMMA masked tool is used for varactor micropattern generation using maskless micro-electrochemical texturing. The developed maskless electrochemical micromachining (EMM) setup consists of various sub-systems, namely EMM cell, workpiece and tool fixture devices, electrical connections and vertical cross flow electrolyte circulation systems. The effect of applied voltage, inter electrode gap and flow rate is investigated on textured characteristics i.e. overcut, machining depth and surface roughness(Ra) using six types of masked patterned tools during maskless micro-electrochemical texturing process. From the experimental investigations, it is observed that SU-8 2150 masked patterned tool is most suitable for the generation of surface texture with higher machining accuracy and good surface quality than other masked tools. The achieved best textured characteristics using SU-8 2150 mask are overcut of 21.33 μm, machining depth of 26.36 μm and surface roughness of 0.0672 μm during maskless micro-electrochemical texturing. More... »

PAGES

1475-1492

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00542-018-4077-x

DOI

http://dx.doi.org/10.1007/s00542-018-4077-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1106195724


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Jadavpur University", 
          "id": "https://www.grid.ac/institutes/grid.216499.1", 
          "name": [
            "Production Engineering Department, Jadavpur University, Kolkata, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kunar", 
        "givenName": "S.", 
        "id": "sg:person.012675121430.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012675121430.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jadavpur University", 
          "id": "https://www.grid.ac/institutes/grid.216499.1", 
          "name": [
            "Production Engineering Department, Jadavpur University, Kolkata, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bhattacharyya", 
        "givenName": "B.", 
        "id": "sg:person.016107261121.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016107261121.14"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00170-009-2246-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001985486", 
          "https://doi.org/10.1007/s00170-009-2246-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-009-2246-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001985486", 
          "https://doi.org/10.1007/s00170-009-2246-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-009-2246-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001985486", 
          "https://doi.org/10.1007/s00170-009-2246-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apsusc.2011.05.061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007359908"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmatprotec.2008.09.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009178331"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.surfcoat.2012.08.043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010020174"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cirp.2008.09.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014787365"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10426914.2010.525575", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015572759"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cja.2014.03.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020764656"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apsusc.2015.03.087", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022498680"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cirp.2009.03.072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041339120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1149/1.1391966", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041373436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00542-011-1225-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043458292", 
          "https://doi.org/10.1007/s00542-011-1225-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.electacta.2005.04.053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050397538"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4028/www.scientific.net/amr.189-193.692", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052897212"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.4003123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062143466"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.4003123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062143466"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40436-017-0186-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091418245", 
          "https://doi.org/10.1007/s40436-017-0186-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40436-017-0186-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091418245", 
          "https://doi.org/10.1007/s40436-017-0186-5"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "Micromachining technology plays an important role for enhancing the interfacial properties of surface texture by precisely controlling the shape and size of textured surfaces. Maskless micro-electrochemical texturing is a unique method for the generation of surface textures using different masked patterned tools with good shape and size. Fabrication of surface textures depends on suitable masked patterned tools, which are used in maskless micro-electrochemical texturing process. This article presents the effect and capability of six types of masked patterned tools with AZ4903, AZ4620, AZ1415H, synthetic prolite enamel, PMMA (Polymethyl methacrylate) and SU-8 2150 masks for the generation of textured samples utilizing developed experimental setup of maskless micro-electrochemical texturing. AZ4903, AZ4620, AZ1415H, synthetic prolite enamel and SU-8 2150 masked tools are used for fabrication of micro circular patterns and PMMA masked tool is used for varactor micropattern generation using maskless micro-electrochemical texturing. The developed maskless electrochemical micromachining (EMM) setup consists of various sub-systems, namely EMM cell, workpiece and tool fixture devices, electrical connections and vertical cross flow electrolyte circulation systems. The effect of applied voltage, inter electrode gap and flow rate is investigated on textured characteristics i.e. overcut, machining depth and surface roughness(Ra) using six types of masked patterned tools during maskless micro-electrochemical texturing process. From the experimental investigations, it is observed that SU-8 2150 masked patterned tool is most suitable for the generation of surface texture with higher machining accuracy and good surface quality than other masked tools. The achieved best textured characteristics using SU-8 2150 mask are overcut of 21.33 \u03bcm, machining depth of 26.36 \u03bcm and surface roughness of 0.0672 \u03bcm during maskless micro-electrochemical texturing.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00542-018-4077-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1294787", 
        "issn": [
          "0946-7076", 
          "1432-1858"
        ], 
        "name": "Microsystem Technologies", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "25"
      }
    ], 
    "name": "Effect of various masked patterned tools during micro-electrochemical texturing", 
    "pagination": "1475-1492", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "fea114d668ac5631477a25c2ea1da15f305578d5e6af4f88cb1cd475f5bafab7"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00542-018-4077-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1106195724"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00542-018-4077-x", 
      "https://app.dimensions.ai/details/publication/pub.1106195724"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000364_0000000364/records_72843_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00542-018-4077-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00542-018-4077-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00542-018-4077-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00542-018-4077-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00542-018-4077-x'


 

This table displays all metadata directly associated to this object as RDF triples.

116 TRIPLES      21 PREDICATES      42 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00542-018-4077-x schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N1574c6f13645460792e5c8c603a36ac7
4 schema:citation sg:pub.10.1007/s00170-009-2246-x
5 sg:pub.10.1007/s00542-011-1225-y
6 sg:pub.10.1007/s40436-017-0186-5
7 https://doi.org/10.1016/j.apsusc.2011.05.061
8 https://doi.org/10.1016/j.apsusc.2015.03.087
9 https://doi.org/10.1016/j.cirp.2008.09.003
10 https://doi.org/10.1016/j.cirp.2009.03.072
11 https://doi.org/10.1016/j.cja.2014.03.012
12 https://doi.org/10.1016/j.electacta.2005.04.053
13 https://doi.org/10.1016/j.jmatprotec.2008.09.004
14 https://doi.org/10.1016/j.surfcoat.2012.08.043
15 https://doi.org/10.1080/10426914.2010.525575
16 https://doi.org/10.1115/1.4003123
17 https://doi.org/10.1149/1.1391966
18 https://doi.org/10.4028/www.scientific.net/amr.189-193.692
19 schema:datePublished 2019-04
20 schema:datePublishedReg 2019-04-01
21 schema:description Micromachining technology plays an important role for enhancing the interfacial properties of surface texture by precisely controlling the shape and size of textured surfaces. Maskless micro-electrochemical texturing is a unique method for the generation of surface textures using different masked patterned tools with good shape and size. Fabrication of surface textures depends on suitable masked patterned tools, which are used in maskless micro-electrochemical texturing process. This article presents the effect and capability of six types of masked patterned tools with AZ4903, AZ4620, AZ1415H, synthetic prolite enamel, PMMA (Polymethyl methacrylate) and SU-8 2150 masks for the generation of textured samples utilizing developed experimental setup of maskless micro-electrochemical texturing. AZ4903, AZ4620, AZ1415H, synthetic prolite enamel and SU-8 2150 masked tools are used for fabrication of micro circular patterns and PMMA masked tool is used for varactor micropattern generation using maskless micro-electrochemical texturing. The developed maskless electrochemical micromachining (EMM) setup consists of various sub-systems, namely EMM cell, workpiece and tool fixture devices, electrical connections and vertical cross flow electrolyte circulation systems. The effect of applied voltage, inter electrode gap and flow rate is investigated on textured characteristics i.e. overcut, machining depth and surface roughness(Ra) using six types of masked patterned tools during maskless micro-electrochemical texturing process. From the experimental investigations, it is observed that SU-8 2150 masked patterned tool is most suitable for the generation of surface texture with higher machining accuracy and good surface quality than other masked tools. The achieved best textured characteristics using SU-8 2150 mask are overcut of 21.33 μm, machining depth of 26.36 μm and surface roughness of 0.0672 μm during maskless micro-electrochemical texturing.
22 schema:genre research_article
23 schema:inLanguage en
24 schema:isAccessibleForFree false
25 schema:isPartOf N1bcb441cea4e4f1d9bf7519982cebca1
26 N8cf36d84d741412f892c85e2688c63db
27 sg:journal.1294787
28 schema:name Effect of various masked patterned tools during micro-electrochemical texturing
29 schema:pagination 1475-1492
30 schema:productId N07c88e1572d6466d903a9847b598131c
31 N2d09bfca050d4754bb02b4b85c866bd8
32 Nd8b404d12de94e07adb83a391d0d8e42
33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106195724
34 https://doi.org/10.1007/s00542-018-4077-x
35 schema:sdDatePublished 2019-04-11T12:53
36 schema:sdLicense https://scigraph.springernature.com/explorer/license/
37 schema:sdPublisher N66fa99530af8499283988e46c3f6b3ed
38 schema:url https://link.springer.com/10.1007%2Fs00542-018-4077-x
39 sgo:license sg:explorer/license/
40 sgo:sdDataset articles
41 rdf:type schema:ScholarlyArticle
42 N07c88e1572d6466d903a9847b598131c schema:name readcube_id
43 schema:value fea114d668ac5631477a25c2ea1da15f305578d5e6af4f88cb1cd475f5bafab7
44 rdf:type schema:PropertyValue
45 N1574c6f13645460792e5c8c603a36ac7 rdf:first sg:person.012675121430.13
46 rdf:rest N67be6042372c4b2c8ff04f41acf1cb5a
47 N1bcb441cea4e4f1d9bf7519982cebca1 schema:volumeNumber 25
48 rdf:type schema:PublicationVolume
49 N2d09bfca050d4754bb02b4b85c866bd8 schema:name dimensions_id
50 schema:value pub.1106195724
51 rdf:type schema:PropertyValue
52 N66fa99530af8499283988e46c3f6b3ed schema:name Springer Nature - SN SciGraph project
53 rdf:type schema:Organization
54 N67be6042372c4b2c8ff04f41acf1cb5a rdf:first sg:person.016107261121.14
55 rdf:rest rdf:nil
56 N8cf36d84d741412f892c85e2688c63db schema:issueNumber 4
57 rdf:type schema:PublicationIssue
58 Nd8b404d12de94e07adb83a391d0d8e42 schema:name doi
59 schema:value 10.1007/s00542-018-4077-x
60 rdf:type schema:PropertyValue
61 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
62 schema:name Chemical Sciences
63 rdf:type schema:DefinedTerm
64 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
65 schema:name Physical Chemistry (incl. Structural)
66 rdf:type schema:DefinedTerm
67 sg:journal.1294787 schema:issn 0946-7076
68 1432-1858
69 schema:name Microsystem Technologies
70 rdf:type schema:Periodical
71 sg:person.012675121430.13 schema:affiliation https://www.grid.ac/institutes/grid.216499.1
72 schema:familyName Kunar
73 schema:givenName S.
74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012675121430.13
75 rdf:type schema:Person
76 sg:person.016107261121.14 schema:affiliation https://www.grid.ac/institutes/grid.216499.1
77 schema:familyName Bhattacharyya
78 schema:givenName B.
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016107261121.14
80 rdf:type schema:Person
81 sg:pub.10.1007/s00170-009-2246-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1001985486
82 https://doi.org/10.1007/s00170-009-2246-x
83 rdf:type schema:CreativeWork
84 sg:pub.10.1007/s00542-011-1225-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1043458292
85 https://doi.org/10.1007/s00542-011-1225-y
86 rdf:type schema:CreativeWork
87 sg:pub.10.1007/s40436-017-0186-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091418245
88 https://doi.org/10.1007/s40436-017-0186-5
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1016/j.apsusc.2011.05.061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007359908
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1016/j.apsusc.2015.03.087 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022498680
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1016/j.cirp.2008.09.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014787365
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1016/j.cirp.2009.03.072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041339120
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1016/j.cja.2014.03.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020764656
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1016/j.electacta.2005.04.053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050397538
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1016/j.jmatprotec.2008.09.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009178331
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1016/j.surfcoat.2012.08.043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010020174
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1080/10426914.2010.525575 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015572759
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1115/1.4003123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062143466
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1149/1.1391966 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041373436
111 rdf:type schema:CreativeWork
112 https://doi.org/10.4028/www.scientific.net/amr.189-193.692 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052897212
113 rdf:type schema:CreativeWork
114 https://www.grid.ac/institutes/grid.216499.1 schema:alternateName Jadavpur University
115 schema:name Production Engineering Department, Jadavpur University, Kolkata, India
116 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...