Analysis of RF MEMS shunt capacitive switch with uniform and non-uniform meanders View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-08-09

AUTHORS

K. Girija Sravani, K. Srinivasa Rao

ABSTRACT

This paper reports on electromechanical, switching time and performance analysis of capacitive shunt RF MEMS switch with uniform and non-uniform meanders. The MEMS switch is a freely moving membrane over coplanar wave guide. Electromechanical analysis is done for movable beam with gold as material and dielectric as Si3N4 and HfO2. For these dielectric materials pull in voltage is 2.3 and 2 V respectively with beam thickness of 0.8 µm by using COMSOL FEM Tool. Si3N4 with dielectric constant of 7.6 gives Cratio of 8.69 and 11.13 for 0.8 and 0.6 μm of beam thickness respectively. RF performance analysis is done by using HFSS software and the simulation results states that non uniform single meander has return loss as −60 dB, insertion loss −0.2 dB and isolation loss −14 dB at 20 GHz frequency and uniform 3 meander switch has return loss as −55 dB. Switching time analysis is done by using MATLAB. For uniform three meander it is 0.12 ms and for non-uniform one meander beam it is 0.7 ms. Whereas use of HfO2 with dielectric constant of 14 as dielectric gives Cratio of 14.93 and 19.66 for 0.8 and 0.6 μm of beam thickness respectively with gap between the electrode beam and dielectric as 0.8 μm. More... »

PAGES

1309-1315

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00542-017-3507-5

DOI

http://dx.doi.org/10.1007/s00542-017-3507-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1091116800


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Technology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1005", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Communications Technologies", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1007", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Nanotechnology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Microelectronics Research Group, Department of ECE, KL University, Green Feidls, Vaddeswaram, 520502, Guntur, Andhra Pradesh, India", 
          "id": "http://www.grid.ac/institutes/grid.449504.8", 
          "name": [
            "Microelectronics Research Group, Department of ECE, KL University, Green Feidls, Vaddeswaram, 520502, Guntur, Andhra Pradesh, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Girija Sravani", 
        "givenName": "K.", 
        "id": "sg:person.013577303350.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013577303350.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Microelectronics Research Group, Department of ECE, KL University, Green Feidls, Vaddeswaram, 520502, Guntur, Andhra Pradesh, India", 
          "id": "http://www.grid.ac/institutes/grid.449504.8", 
          "name": [
            "Microelectronics Research Group, Department of ECE, KL University, Green Feidls, Vaddeswaram, 520502, Guntur, Andhra Pradesh, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Srinivasa Rao", 
        "givenName": "K.", 
        "id": "sg:person.013264451347.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013264451347.18"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00542-010-1032-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009453490", 
          "https://doi.org/10.1007/s00542-010-1032-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00542-013-1930-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047865604", 
          "https://doi.org/10.1007/s00542-013-1930-9"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-08-09", 
    "datePublishedReg": "2017-08-09", 
    "description": "This paper reports on electromechanical, switching time and performance analysis of capacitive shunt RF MEMS switch with uniform and non-uniform meanders. The MEMS switch is a freely moving membrane over coplanar wave guide. Electromechanical analysis is done for movable beam with gold as material and dielectric as Si3N4 and HfO2. For these dielectric materials pull in voltage is 2.3 and 2\u00a0V respectively with beam thickness of 0.8\u00a0\u00b5m by using COMSOL FEM Tool. Si3N4 with dielectric constant of 7.6 gives Cratio of 8.69 and 11.13 for 0.8 and 0.6\u00a0\u03bcm of beam thickness respectively. RF performance analysis is done by using HFSS software and the simulation results states that non uniform single meander has return loss as \u221260\u00a0dB, insertion loss \u22120.2\u00a0dB and isolation loss \u221214\u00a0dB at 20\u00a0GHz frequency and uniform 3 meander switch has return loss as \u221255\u00a0dB. Switching time analysis is done by using MATLAB. For uniform three meander it is 0.12\u00a0ms and for non-uniform one meander beam it is 0.7\u00a0ms. Whereas use of HfO2 with dielectric constant of 14 as dielectric gives Cratio of 14.93 and 19.66 for 0.8 and 0.6\u00a0\u03bcm of beam thickness respectively with gap between the electrode beam and dielectric as 0.8\u00a0\u03bcm.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00542-017-3507-5", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1294787", 
        "issn": [
          "1099-8047", 
          "1432-1858"
        ], 
        "name": "Microsystem Technologies", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "24"
      }
    ], 
    "keywords": [
      "non-uniform meanders", 
      "beam thickness", 
      "shunt capacitive switch", 
      "use of HfO2", 
      "RF performance analysis", 
      "Analysis of RF", 
      "performance analysis", 
      "return loss", 
      "FEM tool", 
      "RF MEMS", 
      "electromechanical analysis", 
      "capacitive switches", 
      "MEMS switches", 
      "coplanar wave guide", 
      "dielectric materials", 
      "movable beam", 
      "single meander", 
      "insertion loss", 
      "isolation loss", 
      "GHz frequency", 
      "wave guide", 
      "Si3N4", 
      "HfO2", 
      "thickness", 
      "dielectric", 
      "beam", 
      "dB", 
      "HFSS software", 
      "MEMS", 
      "materials", 
      "uniform", 
      "voltage", 
      "meanders", 
      "switch", 
      "MATLAB", 
      "simulations", 
      "RF", 
      "time analysis", 
      "loss", 
      "ms", 
      "analysis", 
      "software", 
      "frequency", 
      "gold", 
      "gap", 
      "time", 
      "membrane", 
      "tool", 
      "use", 
      "guide", 
      "paper"
    ], 
    "name": "Analysis of RF MEMS shunt capacitive switch with uniform and non-uniform meanders", 
    "pagination": "1309-1315", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1091116800"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00542-017-3507-5"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00542-017-3507-5", 
      "https://app.dimensions.ai/details/publication/pub.1091116800"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T21:01", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_726.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00542-017-3507-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00542-017-3507-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00542-017-3507-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00542-017-3507-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00542-017-3507-5'


 

This table displays all metadata directly associated to this object as RDF triples.

127 TRIPLES      21 PREDICATES      78 URIs      67 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00542-017-3507-5 schema:about anzsrc-for:10
2 anzsrc-for:1005
3 anzsrc-for:1007
4 schema:author N25df30a718564a1fa777e733f217cc60
5 schema:citation sg:pub.10.1007/s00542-010-1032-x
6 sg:pub.10.1007/s00542-013-1930-9
7 schema:datePublished 2017-08-09
8 schema:datePublishedReg 2017-08-09
9 schema:description This paper reports on electromechanical, switching time and performance analysis of capacitive shunt RF MEMS switch with uniform and non-uniform meanders. The MEMS switch is a freely moving membrane over coplanar wave guide. Electromechanical analysis is done for movable beam with gold as material and dielectric as Si3N4 and HfO2. For these dielectric materials pull in voltage is 2.3 and 2 V respectively with beam thickness of 0.8 µm by using COMSOL FEM Tool. Si3N4 with dielectric constant of 7.6 gives Cratio of 8.69 and 11.13 for 0.8 and 0.6 μm of beam thickness respectively. RF performance analysis is done by using HFSS software and the simulation results states that non uniform single meander has return loss as −60 dB, insertion loss −0.2 dB and isolation loss −14 dB at 20 GHz frequency and uniform 3 meander switch has return loss as −55 dB. Switching time analysis is done by using MATLAB. For uniform three meander it is 0.12 ms and for non-uniform one meander beam it is 0.7 ms. Whereas use of HfO2 with dielectric constant of 14 as dielectric gives Cratio of 14.93 and 19.66 for 0.8 and 0.6 μm of beam thickness respectively with gap between the electrode beam and dielectric as 0.8 μm.
10 schema:genre article
11 schema:isAccessibleForFree false
12 schema:isPartOf N5d42e567ccf147278a7fc0fb99994dc4
13 N98bdf8a7a2d244f9a689590a8eb6698f
14 sg:journal.1294787
15 schema:keywords Analysis of RF
16 FEM tool
17 GHz frequency
18 HFSS software
19 HfO2
20 MATLAB
21 MEMS
22 MEMS switches
23 RF
24 RF MEMS
25 RF performance analysis
26 Si3N4
27 analysis
28 beam
29 beam thickness
30 capacitive switches
31 coplanar wave guide
32 dB
33 dielectric
34 dielectric materials
35 electromechanical analysis
36 frequency
37 gap
38 gold
39 guide
40 insertion loss
41 isolation loss
42 loss
43 materials
44 meanders
45 membrane
46 movable beam
47 ms
48 non-uniform meanders
49 paper
50 performance analysis
51 return loss
52 shunt capacitive switch
53 simulations
54 single meander
55 software
56 switch
57 thickness
58 time
59 time analysis
60 tool
61 uniform
62 use
63 use of HfO2
64 voltage
65 wave guide
66 schema:name Analysis of RF MEMS shunt capacitive switch with uniform and non-uniform meanders
67 schema:pagination 1309-1315
68 schema:productId N941bc547bc9d44ca883a4abb463e0d41
69 Nbd7fc56fb90a4bf3a3eceb3334ad0beb
70 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091116800
71 https://doi.org/10.1007/s00542-017-3507-5
72 schema:sdDatePublished 2022-11-24T21:01
73 schema:sdLicense https://scigraph.springernature.com/explorer/license/
74 schema:sdPublisher Nb17a83a85fe142e7893585d8eeb9ec48
75 schema:url https://doi.org/10.1007/s00542-017-3507-5
76 sgo:license sg:explorer/license/
77 sgo:sdDataset articles
78 rdf:type schema:ScholarlyArticle
79 N25df30a718564a1fa777e733f217cc60 rdf:first sg:person.013577303350.59
80 rdf:rest N2e4f8b4a3b7d4c518dbd8c4c902af870
81 N2e4f8b4a3b7d4c518dbd8c4c902af870 rdf:first sg:person.013264451347.18
82 rdf:rest rdf:nil
83 N5d42e567ccf147278a7fc0fb99994dc4 schema:issueNumber 2
84 rdf:type schema:PublicationIssue
85 N941bc547bc9d44ca883a4abb463e0d41 schema:name doi
86 schema:value 10.1007/s00542-017-3507-5
87 rdf:type schema:PropertyValue
88 N98bdf8a7a2d244f9a689590a8eb6698f schema:volumeNumber 24
89 rdf:type schema:PublicationVolume
90 Nb17a83a85fe142e7893585d8eeb9ec48 schema:name Springer Nature - SN SciGraph project
91 rdf:type schema:Organization
92 Nbd7fc56fb90a4bf3a3eceb3334ad0beb schema:name dimensions_id
93 schema:value pub.1091116800
94 rdf:type schema:PropertyValue
95 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
96 schema:name Technology
97 rdf:type schema:DefinedTerm
98 anzsrc-for:1005 schema:inDefinedTermSet anzsrc-for:
99 schema:name Communications Technologies
100 rdf:type schema:DefinedTerm
101 anzsrc-for:1007 schema:inDefinedTermSet anzsrc-for:
102 schema:name Nanotechnology
103 rdf:type schema:DefinedTerm
104 sg:journal.1294787 schema:issn 1099-8047
105 1432-1858
106 schema:name Microsystem Technologies
107 schema:publisher Springer Nature
108 rdf:type schema:Periodical
109 sg:person.013264451347.18 schema:affiliation grid-institutes:grid.449504.8
110 schema:familyName Srinivasa Rao
111 schema:givenName K.
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013264451347.18
113 rdf:type schema:Person
114 sg:person.013577303350.59 schema:affiliation grid-institutes:grid.449504.8
115 schema:familyName Girija Sravani
116 schema:givenName K.
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013577303350.59
118 rdf:type schema:Person
119 sg:pub.10.1007/s00542-010-1032-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1009453490
120 https://doi.org/10.1007/s00542-010-1032-x
121 rdf:type schema:CreativeWork
122 sg:pub.10.1007/s00542-013-1930-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047865604
123 https://doi.org/10.1007/s00542-013-1930-9
124 rdf:type schema:CreativeWork
125 grid-institutes:grid.449504.8 schema:alternateName Microelectronics Research Group, Department of ECE, KL University, Green Feidls, Vaddeswaram, 520502, Guntur, Andhra Pradesh, India
126 schema:name Microelectronics Research Group, Department of ECE, KL University, Green Feidls, Vaddeswaram, 520502, Guntur, Andhra Pradesh, India
127 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...