DyProSD: a dynamic protocol specific defense for high-rate DDoS flooding attacks View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-03

AUTHORS

Debojit Boro, Dhruba K. Bhattacharyya

ABSTRACT

High-rate distributed denial of service (HDDoS) flooding attacks pose as a major threat to the Internet. Most present solutions based on machine learning approach are inept for detecting the attacks in real time due to high processing overhead. In this paper, we present a defense solution referred to as DyProSD that combines both the merits of feature-based and statistical approach to handle HDDoS flooding attacks. The statistical module marks the suspicious traffic and forwards to an ensemble of classifiers for ascertaining the traffic as malicious or normal. Our method filters the attack traffic protocol specifically by allocating various protocol specific filter engines dynamically. As and when DDoS attack occurs and the load of a filter engine reaches beyond its capable limit, a new filter engine is recruited dynamically from the idle resource pool for filtering, thus guaranteeing the quality of service for legitimate users concurrently. We establish the effectiveness of DyProSD through several experimental analysis and real-world dataset experiments and the results indicate enough confidence in favour of our solution. More... »

PAGES

593-611

References to SciGraph publications

  • 2010-02. Ensemble-based classifiers in ARTIFICIAL INTELLIGENCE REVIEW
  • 2009-12. Botnet: Classification, Attacks, Detection, Tracing, and Preventive Measures in EURASIP JOURNAL ON WIRELESS COMMUNICATIONS AND NETWORKING
  • 2010. Use of IP Addresses for High Rate Flooding Attack Detection in SECURITY AND PRIVACY – SILVER LININGS IN THE CLOUD
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00542-016-2978-0

    DOI

    http://dx.doi.org/10.1007/s00542-016-2978-0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1020316127


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Tezpur University", 
              "id": "https://www.grid.ac/institutes/grid.45982.32", 
              "name": [
                "Department of Computer Science and Engineering, Tezpur University, 784028, Tezpur, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Boro", 
            "givenName": "Debojit", 
            "id": "sg:person.016606107522.74", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016606107522.74"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Tezpur University", 
              "id": "https://www.grid.ac/institutes/grid.45982.32", 
              "name": [
                "Department of Computer Science and Engineering, Tezpur University, 784028, Tezpur, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bhattacharyya", 
            "givenName": "Dhruba K.", 
            "id": "sg:person.013101457343.35", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013101457343.35"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/0165-1684(89)90079-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004906883"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0165-1684(89)90079-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004906883"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-15257-3_12", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008617719", 
              "https://doi.org/10.1007/978-3-642-15257-3_12"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-15257-3_12", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008617719", 
              "https://doi.org/10.1007/978-3-642-15257-3_12"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/505659.505664", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011418880"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10462-009-9124-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017758686", 
              "https://doi.org/10.1007/s10462-009-9124-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10462-009-9124-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017758686", 
              "https://doi.org/10.1007/s10462-009-9124-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10462-009-9124-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017758686", 
              "https://doi.org/10.1007/s10462-009-9124-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0893-6080(05)80023-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020902633"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1155/2009/692654", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027843844", 
              "https://doi.org/10.1155/2009/692654"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.comcom.2012.04.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037435296"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/511446.511485", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042183079"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/j.1538-7305.1948.tb01338.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052867467"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/mcas.2006.1688199", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061389638"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tdsc.2014.2302298", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061585437"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1504/ijica.2015.073004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1067461900"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4304/jnw.8.4.858-865", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072451193"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/lcn.2011.6115504", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094746182"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/honet.2013.6729754", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095243870"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/ccnc.2011.5766474", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095345470"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1613/jair.614", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105579486"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-03", 
        "datePublishedReg": "2017-03-01", 
        "description": "High-rate distributed denial of service (HDDoS) flooding attacks pose as a major threat to the Internet. Most present solutions based on machine learning approach are inept for detecting the attacks in real time due to high processing overhead. In this paper, we present a defense solution referred to as DyProSD that combines both the merits of feature-based and statistical approach to handle HDDoS flooding attacks. The statistical module marks the suspicious traffic and forwards to an ensemble of classifiers for ascertaining the traffic as malicious or normal. Our method filters the attack traffic protocol specifically by allocating various protocol specific filter engines dynamically. As and when DDoS attack occurs and the load of a filter engine reaches beyond its capable limit, a new filter engine is recruited dynamically from the idle resource pool for filtering, thus guaranteeing the quality of service for legitimate users concurrently. We establish the effectiveness of DyProSD through several experimental analysis and real-world dataset experiments and the results indicate enough confidence in favour of our solution.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00542-016-2978-0", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1294787", 
            "issn": [
              "0946-7076", 
              "1432-1858"
            ], 
            "name": "Microsystem Technologies", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "23"
          }
        ], 
        "name": "DyProSD: a dynamic protocol specific defense for high-rate DDoS flooding attacks", 
        "pagination": "593-611", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "60cd082256c98ddde5f011ade22ab12f74e070b99579cb48ebf1026fe4b6ba2b"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00542-016-2978-0"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1020316127"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00542-016-2978-0", 
          "https://app.dimensions.ai/details/publication/pub.1020316127"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T00:28", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000585.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs00542-016-2978-0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00542-016-2978-0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00542-016-2978-0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00542-016-2978-0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00542-016-2978-0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    122 TRIPLES      21 PREDICATES      44 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00542-016-2978-0 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N54cfbd70e4704c8799ea245fb307f179
    4 schema:citation sg:pub.10.1007/978-3-642-15257-3_12
    5 sg:pub.10.1007/s10462-009-9124-7
    6 sg:pub.10.1155/2009/692654
    7 https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
    8 https://doi.org/10.1016/0165-1684(89)90079-0
    9 https://doi.org/10.1016/j.comcom.2012.04.002
    10 https://doi.org/10.1016/s0893-6080(05)80023-1
    11 https://doi.org/10.1109/ccnc.2011.5766474
    12 https://doi.org/10.1109/honet.2013.6729754
    13 https://doi.org/10.1109/lcn.2011.6115504
    14 https://doi.org/10.1109/mcas.2006.1688199
    15 https://doi.org/10.1109/tdsc.2014.2302298
    16 https://doi.org/10.1145/505659.505664
    17 https://doi.org/10.1145/511446.511485
    18 https://doi.org/10.1504/ijica.2015.073004
    19 https://doi.org/10.1613/jair.614
    20 https://doi.org/10.4304/jnw.8.4.858-865
    21 schema:datePublished 2017-03
    22 schema:datePublishedReg 2017-03-01
    23 schema:description High-rate distributed denial of service (HDDoS) flooding attacks pose as a major threat to the Internet. Most present solutions based on machine learning approach are inept for detecting the attacks in real time due to high processing overhead. In this paper, we present a defense solution referred to as DyProSD that combines both the merits of feature-based and statistical approach to handle HDDoS flooding attacks. The statistical module marks the suspicious traffic and forwards to an ensemble of classifiers for ascertaining the traffic as malicious or normal. Our method filters the attack traffic protocol specifically by allocating various protocol specific filter engines dynamically. As and when DDoS attack occurs and the load of a filter engine reaches beyond its capable limit, a new filter engine is recruited dynamically from the idle resource pool for filtering, thus guaranteeing the quality of service for legitimate users concurrently. We establish the effectiveness of DyProSD through several experimental analysis and real-world dataset experiments and the results indicate enough confidence in favour of our solution.
    24 schema:genre research_article
    25 schema:inLanguage en
    26 schema:isAccessibleForFree false
    27 schema:isPartOf Nb4199568036d449da3784aebb697756b
    28 Nbaee5765103e4806bae21454007eefd6
    29 sg:journal.1294787
    30 schema:name DyProSD: a dynamic protocol specific defense for high-rate DDoS flooding attacks
    31 schema:pagination 593-611
    32 schema:productId N0319d02e32a04e70aef369ba9353c1f7
    33 N9994992670ae4965a60fafc5ce03cf12
    34 Nbd8693fb32a84061af9dd8c7ccd62a67
    35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020316127
    36 https://doi.org/10.1007/s00542-016-2978-0
    37 schema:sdDatePublished 2019-04-11T00:28
    38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    39 schema:sdPublisher N92206a4d8cc342518176fc43a03887eb
    40 schema:url http://link.springer.com/10.1007%2Fs00542-016-2978-0
    41 sgo:license sg:explorer/license/
    42 sgo:sdDataset articles
    43 rdf:type schema:ScholarlyArticle
    44 N0319d02e32a04e70aef369ba9353c1f7 schema:name doi
    45 schema:value 10.1007/s00542-016-2978-0
    46 rdf:type schema:PropertyValue
    47 N41e2d20c6f3c4deabed5e5234d1b4717 rdf:first sg:person.013101457343.35
    48 rdf:rest rdf:nil
    49 N54cfbd70e4704c8799ea245fb307f179 rdf:first sg:person.016606107522.74
    50 rdf:rest N41e2d20c6f3c4deabed5e5234d1b4717
    51 N92206a4d8cc342518176fc43a03887eb schema:name Springer Nature - SN SciGraph project
    52 rdf:type schema:Organization
    53 N9994992670ae4965a60fafc5ce03cf12 schema:name dimensions_id
    54 schema:value pub.1020316127
    55 rdf:type schema:PropertyValue
    56 Nb4199568036d449da3784aebb697756b schema:volumeNumber 23
    57 rdf:type schema:PublicationVolume
    58 Nbaee5765103e4806bae21454007eefd6 schema:issueNumber 3
    59 rdf:type schema:PublicationIssue
    60 Nbd8693fb32a84061af9dd8c7ccd62a67 schema:name readcube_id
    61 schema:value 60cd082256c98ddde5f011ade22ab12f74e070b99579cb48ebf1026fe4b6ba2b
    62 rdf:type schema:PropertyValue
    63 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    64 schema:name Information and Computing Sciences
    65 rdf:type schema:DefinedTerm
    66 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    67 schema:name Artificial Intelligence and Image Processing
    68 rdf:type schema:DefinedTerm
    69 sg:journal.1294787 schema:issn 0946-7076
    70 1432-1858
    71 schema:name Microsystem Technologies
    72 rdf:type schema:Periodical
    73 sg:person.013101457343.35 schema:affiliation https://www.grid.ac/institutes/grid.45982.32
    74 schema:familyName Bhattacharyya
    75 schema:givenName Dhruba K.
    76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013101457343.35
    77 rdf:type schema:Person
    78 sg:person.016606107522.74 schema:affiliation https://www.grid.ac/institutes/grid.45982.32
    79 schema:familyName Boro
    80 schema:givenName Debojit
    81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016606107522.74
    82 rdf:type schema:Person
    83 sg:pub.10.1007/978-3-642-15257-3_12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008617719
    84 https://doi.org/10.1007/978-3-642-15257-3_12
    85 rdf:type schema:CreativeWork
    86 sg:pub.10.1007/s10462-009-9124-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017758686
    87 https://doi.org/10.1007/s10462-009-9124-7
    88 rdf:type schema:CreativeWork
    89 sg:pub.10.1155/2009/692654 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027843844
    90 https://doi.org/10.1155/2009/692654
    91 rdf:type schema:CreativeWork
    92 https://doi.org/10.1002/j.1538-7305.1948.tb01338.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1052867467
    93 rdf:type schema:CreativeWork
    94 https://doi.org/10.1016/0165-1684(89)90079-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004906883
    95 rdf:type schema:CreativeWork
    96 https://doi.org/10.1016/j.comcom.2012.04.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037435296
    97 rdf:type schema:CreativeWork
    98 https://doi.org/10.1016/s0893-6080(05)80023-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020902633
    99 rdf:type schema:CreativeWork
    100 https://doi.org/10.1109/ccnc.2011.5766474 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095345470
    101 rdf:type schema:CreativeWork
    102 https://doi.org/10.1109/honet.2013.6729754 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095243870
    103 rdf:type schema:CreativeWork
    104 https://doi.org/10.1109/lcn.2011.6115504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094746182
    105 rdf:type schema:CreativeWork
    106 https://doi.org/10.1109/mcas.2006.1688199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061389638
    107 rdf:type schema:CreativeWork
    108 https://doi.org/10.1109/tdsc.2014.2302298 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061585437
    109 rdf:type schema:CreativeWork
    110 https://doi.org/10.1145/505659.505664 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011418880
    111 rdf:type schema:CreativeWork
    112 https://doi.org/10.1145/511446.511485 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042183079
    113 rdf:type schema:CreativeWork
    114 https://doi.org/10.1504/ijica.2015.073004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067461900
    115 rdf:type schema:CreativeWork
    116 https://doi.org/10.1613/jair.614 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105579486
    117 rdf:type schema:CreativeWork
    118 https://doi.org/10.4304/jnw.8.4.858-865 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072451193
    119 rdf:type schema:CreativeWork
    120 https://www.grid.ac/institutes/grid.45982.32 schema:alternateName Tezpur University
    121 schema:name Department of Computer Science and Engineering, Tezpur University, 784028, Tezpur, India
    122 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...