Influences of interface oxidation on transmission laser bonding of wafers for microsystem packaging View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2006-09-07

AUTHORS

Ampere A. Tseng, Jong-Seung Park, George P. Vakanas, Hongtao Wu, Miroslav Raudensky, T. P. Chen

ABSTRACT

In the fabrication of micro-devices and systems, wafer bonding offers a unique opportunity for constructing complicated three-dimensional structures. In this paper, a wafer bonding technique, called transmission laser bonding (TLB), is studied with focus on the effects of interface oxidation and contact pressure on the bonding strength. The TLB is implemented for bonding Pyrex glass-to-silicon wafers, with and without interface oxide layers, using a Q-switch pulsed Nd:YAG laser. The tensile strengths of the TLB bonded specimens are comparable to those generated by the existing major wafer bonding techniques. The advantages of TLB are also discussed with some details. The oxide thickness is measured by spectro-reflectometry while the roughness of the oxidized surfaces is quantified using Atomic Force Microscopy (AFM). The bonded interfaces are analyzed by X-ray Photoelectron Spectroscopy (XPS) and Auger Electron Spectroscopy (AES) to study the migration and diffusion of different atoms across the bonding interface and to provide the necessary information for the understanding of the bonding mechanism. A thermal penetration analysis is also provided to validate the findings of the bond strength and spectroscopic evaluations. More... »

PAGES

49-59

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00542-006-0249-1

DOI

http://dx.doi.org/10.1007/s00542-006-0249-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1019699144


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Technology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1005", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Communications Technologies", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1007", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Nanotechnology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mechanical and Aerospace Engineering, Arizona State University, Box 876106, 1711 S. Rural Rd, 85287-6106, Tempe, AZ, USA", 
          "id": "http://www.grid.ac/institutes/grid.215654.1", 
          "name": [
            "Department of Mechanical and Aerospace Engineering, Arizona State University, Box 876106, 1711 S. Rural Rd, 85287-6106, Tempe, AZ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tseng", 
        "givenName": "Ampere A.", 
        "id": "sg:person.01134163176.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01134163176.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mechanical and Aerospace Engineering, Arizona State University, Box 876106, 1711 S. Rural Rd, 85287-6106, Tempe, AZ, USA", 
          "id": "http://www.grid.ac/institutes/grid.215654.1", 
          "name": [
            "Department of Mechanical and Aerospace Engineering, Arizona State University, Box 876106, 1711 S. Rural Rd, 85287-6106, Tempe, AZ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Park", 
        "givenName": "Jong-Seung", 
        "id": "sg:person.010515544503.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010515544503.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Intel Corp., 85226, Chandler, AZ, USA", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Mechanical and Aerospace Engineering, Arizona State University, Box 876106, 1711 S. Rural Rd, 85287-6106, Tempe, AZ, USA", 
            "Intel Corp., 85226, Chandler, AZ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vakanas", 
        "givenName": "George P.", 
        "id": "sg:person.016027417271.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016027417271.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sabbatical from Nanjing University of Aeronautics and Astronautics, Nanjing, China", 
          "id": "http://www.grid.ac/institutes/grid.64938.30", 
          "name": [
            "Department of Mechanical and Aerospace Engineering, Arizona State University, Box 876106, 1711 S. Rural Rd, 85287-6106, Tempe, AZ, USA", 
            "Sabbatical from Nanjing University of Aeronautics and Astronautics, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wu", 
        "givenName": "Hongtao", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratory of Heat Transfer and Fluid Flow, Brno University of Technology, 61669, Brno, Czech Republic", 
          "id": "http://www.grid.ac/institutes/grid.4994.0", 
          "name": [
            "Laboratory of Heat Transfer and Fluid Flow, Brno University of Technology, 61669, Brno, Czech Republic"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Raudensky", 
        "givenName": "Miroslav", 
        "id": "sg:person.010425265033.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010425265033.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Electrical and Electronic Engineering, Nanyang Technology University, Singapore, Singapore", 
          "id": "http://www.grid.ac/institutes/grid.59025.3b", 
          "name": [
            "School of Electrical and Electronic Engineering, Nanyang Technology University, Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "T. P.", 
        "id": "sg:person.013722414135.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013722414135.25"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2006-09-07", 
    "datePublishedReg": "2006-09-07", 
    "description": "In the fabrication of micro-devices and systems, wafer bonding offers a unique opportunity for constructing complicated three-dimensional structures. In this paper, a wafer bonding technique, called transmission laser bonding (TLB), is studied with focus on the effects of interface oxidation and contact pressure on the bonding strength. The TLB is implemented for bonding Pyrex glass-to-silicon wafers, with and without interface oxide layers, using a Q-switch pulsed Nd:YAG laser. The tensile strengths of the TLB bonded specimens are comparable to those generated by the existing major wafer bonding techniques. The advantages of TLB are also discussed with some details. The oxide thickness is measured by spectro-reflectometry while the roughness of the oxidized surfaces is quantified using Atomic Force Microscopy (AFM). The bonded interfaces are analyzed by X-ray Photoelectron Spectroscopy (XPS) and Auger Electron Spectroscopy (AES) to study the migration and diffusion of different atoms across the bonding interface and to provide the necessary information for the understanding of the bonding mechanism. A thermal penetration analysis is also provided to validate the findings of the bond strength and spectroscopic evaluations.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00542-006-0249-1", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3050505", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3020006", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1294787", 
        "issn": [
          "0946-7076", 
          "1432-1858"
        ], 
        "name": "Microsystem Technologies", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "13"
      }
    ], 
    "keywords": [
      "transmission laser bonding", 
      "Auger electron spectroscopy", 
      "atomic force microscopy", 
      "laser bonding", 
      "wafer bonding technique", 
      "interface oxide layer", 
      "ray photoelectron spectroscopy", 
      "electron spectroscopy", 
      "force microscopy", 
      "YAG laser", 
      "different atoms", 
      "photoelectron spectroscopy", 
      "interface oxidation", 
      "silicon wafers", 
      "oxide thickness", 
      "Pyrex glass", 
      "oxide layer", 
      "wafers", 
      "microsystem packaging", 
      "spectroscopy", 
      "bonding interface", 
      "spectroscopic evaluation", 
      "tensile strength", 
      "bonding technique", 
      "bonding strength", 
      "contact pressure", 
      "bonding mechanism", 
      "laser", 
      "bonding", 
      "three-dimensional structure", 
      "penetration analysis", 
      "bond strength", 
      "atoms", 
      "Nd", 
      "strength", 
      "microscopy", 
      "glass", 
      "unique opportunity", 
      "interface", 
      "fabrication", 
      "roughness", 
      "thickness", 
      "layer", 
      "surface", 
      "packaging", 
      "technique", 
      "diffusion", 
      "structure", 
      "oxidation", 
      "necessary information", 
      "detail", 
      "switch", 
      "specimens", 
      "pressure", 
      "influence", 
      "advantages", 
      "system", 
      "effect", 
      "mechanism", 
      "analysis", 
      "understanding", 
      "evaluation", 
      "information", 
      "focus", 
      "paper", 
      "opportunities", 
      "migration", 
      "findings", 
      "major wafer", 
      "advantages of TLB", 
      "thermal penetration analysis"
    ], 
    "name": "Influences of interface oxidation on transmission laser bonding of wafers for microsystem packaging", 
    "pagination": "49-59", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1019699144"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00542-006-0249-1"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00542-006-0249-1", 
      "https://app.dimensions.ai/details/publication/pub.1019699144"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:17", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_420.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00542-006-0249-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00542-006-0249-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00542-006-0249-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00542-006-0249-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00542-006-0249-1'


 

This table displays all metadata directly associated to this object as RDF triples.

185 TRIPLES      21 PREDICATES      97 URIs      88 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00542-006-0249-1 schema:about anzsrc-for:10
2 anzsrc-for:1005
3 anzsrc-for:1007
4 schema:author N84c911cca3ba412e9281cbddc2c1d645
5 schema:datePublished 2006-09-07
6 schema:datePublishedReg 2006-09-07
7 schema:description In the fabrication of micro-devices and systems, wafer bonding offers a unique opportunity for constructing complicated three-dimensional structures. In this paper, a wafer bonding technique, called transmission laser bonding (TLB), is studied with focus on the effects of interface oxidation and contact pressure on the bonding strength. The TLB is implemented for bonding Pyrex glass-to-silicon wafers, with and without interface oxide layers, using a Q-switch pulsed Nd:YAG laser. The tensile strengths of the TLB bonded specimens are comparable to those generated by the existing major wafer bonding techniques. The advantages of TLB are also discussed with some details. The oxide thickness is measured by spectro-reflectometry while the roughness of the oxidized surfaces is quantified using Atomic Force Microscopy (AFM). The bonded interfaces are analyzed by X-ray Photoelectron Spectroscopy (XPS) and Auger Electron Spectroscopy (AES) to study the migration and diffusion of different atoms across the bonding interface and to provide the necessary information for the understanding of the bonding mechanism. A thermal penetration analysis is also provided to validate the findings of the bond strength and spectroscopic evaluations.
8 schema:genre article
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N73c2be91d4b040a0a2aaa3603eef6882
12 Ne6b80abb26a3465fbc5a8185484b14fc
13 sg:journal.1294787
14 schema:keywords Auger electron spectroscopy
15 Nd
16 Pyrex glass
17 YAG laser
18 advantages
19 advantages of TLB
20 analysis
21 atomic force microscopy
22 atoms
23 bond strength
24 bonding
25 bonding interface
26 bonding mechanism
27 bonding strength
28 bonding technique
29 contact pressure
30 detail
31 different atoms
32 diffusion
33 effect
34 electron spectroscopy
35 evaluation
36 fabrication
37 findings
38 focus
39 force microscopy
40 glass
41 influence
42 information
43 interface
44 interface oxidation
45 interface oxide layer
46 laser
47 laser bonding
48 layer
49 major wafer
50 mechanism
51 microscopy
52 microsystem packaging
53 migration
54 necessary information
55 opportunities
56 oxidation
57 oxide layer
58 oxide thickness
59 packaging
60 paper
61 penetration analysis
62 photoelectron spectroscopy
63 pressure
64 ray photoelectron spectroscopy
65 roughness
66 silicon wafers
67 specimens
68 spectroscopic evaluation
69 spectroscopy
70 strength
71 structure
72 surface
73 switch
74 system
75 technique
76 tensile strength
77 thermal penetration analysis
78 thickness
79 three-dimensional structure
80 transmission laser bonding
81 understanding
82 unique opportunity
83 wafer bonding technique
84 wafers
85 schema:name Influences of interface oxidation on transmission laser bonding of wafers for microsystem packaging
86 schema:pagination 49-59
87 schema:productId N1fd0bcf28a1947f29ba9642f28e1e58f
88 Nd610c6c37c62430cbcc975abafeb72f1
89 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019699144
90 https://doi.org/10.1007/s00542-006-0249-1
91 schema:sdDatePublished 2021-12-01T19:17
92 schema:sdLicense https://scigraph.springernature.com/explorer/license/
93 schema:sdPublisher Na5b95af1e8b948aeb2c9c3161eee86c8
94 schema:url https://doi.org/10.1007/s00542-006-0249-1
95 sgo:license sg:explorer/license/
96 sgo:sdDataset articles
97 rdf:type schema:ScholarlyArticle
98 N1fd0bcf28a1947f29ba9642f28e1e58f schema:name dimensions_id
99 schema:value pub.1019699144
100 rdf:type schema:PropertyValue
101 N384d3b538446487fb2467c780d84f459 rdf:first Nbd0441c7af3645cab786a13efe0bccdd
102 rdf:rest N636b6e46af464c02a4784341d5634a9f
103 N44ef0dd336c942019306a18927896e64 rdf:first sg:person.010515544503.13
104 rdf:rest Nf2d431b3bd8b48bf801844d2bfb081db
105 N636b6e46af464c02a4784341d5634a9f rdf:first sg:person.010425265033.01
106 rdf:rest Ndfbba7a9e4eb49e89cfd93b3c7bd6a0e
107 N73c2be91d4b040a0a2aaa3603eef6882 schema:issueNumber 1
108 rdf:type schema:PublicationIssue
109 N84c911cca3ba412e9281cbddc2c1d645 rdf:first sg:person.01134163176.52
110 rdf:rest N44ef0dd336c942019306a18927896e64
111 Na5b95af1e8b948aeb2c9c3161eee86c8 schema:name Springer Nature - SN SciGraph project
112 rdf:type schema:Organization
113 Nbd0441c7af3645cab786a13efe0bccdd schema:affiliation grid-institutes:grid.64938.30
114 schema:familyName Wu
115 schema:givenName Hongtao
116 rdf:type schema:Person
117 Nd610c6c37c62430cbcc975abafeb72f1 schema:name doi
118 schema:value 10.1007/s00542-006-0249-1
119 rdf:type schema:PropertyValue
120 Ndfbba7a9e4eb49e89cfd93b3c7bd6a0e rdf:first sg:person.013722414135.25
121 rdf:rest rdf:nil
122 Ne6b80abb26a3465fbc5a8185484b14fc schema:volumeNumber 13
123 rdf:type schema:PublicationVolume
124 Nf2d431b3bd8b48bf801844d2bfb081db rdf:first sg:person.016027417271.17
125 rdf:rest N384d3b538446487fb2467c780d84f459
126 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
127 schema:name Technology
128 rdf:type schema:DefinedTerm
129 anzsrc-for:1005 schema:inDefinedTermSet anzsrc-for:
130 schema:name Communications Technologies
131 rdf:type schema:DefinedTerm
132 anzsrc-for:1007 schema:inDefinedTermSet anzsrc-for:
133 schema:name Nanotechnology
134 rdf:type schema:DefinedTerm
135 sg:grant.3020006 http://pending.schema.org/fundedItem sg:pub.10.1007/s00542-006-0249-1
136 rdf:type schema:MonetaryGrant
137 sg:grant.3050505 http://pending.schema.org/fundedItem sg:pub.10.1007/s00542-006-0249-1
138 rdf:type schema:MonetaryGrant
139 sg:journal.1294787 schema:issn 0946-7076
140 1432-1858
141 schema:name Microsystem Technologies
142 schema:publisher Springer Nature
143 rdf:type schema:Periodical
144 sg:person.010425265033.01 schema:affiliation grid-institutes:grid.4994.0
145 schema:familyName Raudensky
146 schema:givenName Miroslav
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010425265033.01
148 rdf:type schema:Person
149 sg:person.010515544503.13 schema:affiliation grid-institutes:grid.215654.1
150 schema:familyName Park
151 schema:givenName Jong-Seung
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010515544503.13
153 rdf:type schema:Person
154 sg:person.01134163176.52 schema:affiliation grid-institutes:grid.215654.1
155 schema:familyName Tseng
156 schema:givenName Ampere A.
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01134163176.52
158 rdf:type schema:Person
159 sg:person.013722414135.25 schema:affiliation grid-institutes:grid.59025.3b
160 schema:familyName Chen
161 schema:givenName T. P.
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013722414135.25
163 rdf:type schema:Person
164 sg:person.016027417271.17 schema:affiliation grid-institutes:None
165 schema:familyName Vakanas
166 schema:givenName George P.
167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016027417271.17
168 rdf:type schema:Person
169 grid-institutes:None schema:alternateName Intel Corp., 85226, Chandler, AZ, USA
170 schema:name Department of Mechanical and Aerospace Engineering, Arizona State University, Box 876106, 1711 S. Rural Rd, 85287-6106, Tempe, AZ, USA
171 Intel Corp., 85226, Chandler, AZ, USA
172 rdf:type schema:Organization
173 grid-institutes:grid.215654.1 schema:alternateName Department of Mechanical and Aerospace Engineering, Arizona State University, Box 876106, 1711 S. Rural Rd, 85287-6106, Tempe, AZ, USA
174 schema:name Department of Mechanical and Aerospace Engineering, Arizona State University, Box 876106, 1711 S. Rural Rd, 85287-6106, Tempe, AZ, USA
175 rdf:type schema:Organization
176 grid-institutes:grid.4994.0 schema:alternateName Laboratory of Heat Transfer and Fluid Flow, Brno University of Technology, 61669, Brno, Czech Republic
177 schema:name Laboratory of Heat Transfer and Fluid Flow, Brno University of Technology, 61669, Brno, Czech Republic
178 rdf:type schema:Organization
179 grid-institutes:grid.59025.3b schema:alternateName School of Electrical and Electronic Engineering, Nanyang Technology University, Singapore, Singapore
180 schema:name School of Electrical and Electronic Engineering, Nanyang Technology University, Singapore, Singapore
181 rdf:type schema:Organization
182 grid-institutes:grid.64938.30 schema:alternateName Sabbatical from Nanjing University of Aeronautics and Astronautics, Nanjing, China
183 schema:name Department of Mechanical and Aerospace Engineering, Arizona State University, Box 876106, 1711 S. Rural Rd, 85287-6106, Tempe, AZ, USA
184 Sabbatical from Nanjing University of Aeronautics and Astronautics, Nanjing, China
185 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...