A simple morphological classification to estimate the malignant potential of pancreatic neuroendocrine tumors View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-05-09

AUTHORS

Atsushi Oba, Atsushi Kudo, Keiichi Akahoshi, Mitsuhiro Kishino, Takumi Akashi, Eriko Katsuta, Yasuhito Iwao, Hiroaki Ono, Yusuke Mitsunori, Daisuke Ban, Shinji Tanaka, Yoshinobu Eishi, Ukihide Tateishi, Minoru Tanabe

ABSTRACT

BackgroundA novel morphological classification using resected specimens predicted malignant potential and prognosis in patients with pancreatic neuroendocrine tumors (P-NETs). The aim of this study was to examine the predictive ability of morphological diagnoses made using non-invasive multi-detector computed tomography (MDCT) in P-NETs.MethodsBetween 2002 and 2015, 154 patients were diagnosed with P-NETs at the Tokyo Medical and Dental University, and 82 patients who underwent surgical treatment were enrolled. The primary tumors were classified by MDCT into three types: Type I, simple nodular tumor; Type II, simple nodular tumor with extra-nodular growth; and Type III, confluent multinodular tumor. Patients were stratified by 15 clinical specialists according to classification and without any other clinical or pathological information. Clinicopathological features and patient survival were reviewed retrospectively.ResultsThe mean observation time was 1004 days. Forty-six, 22, and 14 patients had Type I, II, and III tumors, respectively. Morphological classification was significantly correlated with advanced features such as tumor size, Ki-67 index, and synchronous liver metastasis (p < 0.001 for all). There were significant differences between all three tumor types as judged by ENETS TNM classification (p < 0.001), AJCC TNM classification (p = 0.046), WHO 2004 classification (p < 0.001), and WHO 2010 classification (p < 0.001). Five-year progression-free survival (PFS) rates for patients with Type I, II, and III tumors were 97, 43, and 31%, respectively (I vs. II, p < 0.001; I vs. III, p < 0.001; II vs. III, p = 0.017). Multivariate analysis revealed Type II/III tumors and synchronous liver metastasis to be independent risk factors for poor PFS.ConclusionA novel simple morphological classification system would predict Type II and III tumors that may have higher malignant potential than Type I tumors. More... »

PAGES

1140-1146

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00535-017-1349-7

DOI

http://dx.doi.org/10.1007/s00535-017-1349-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1085377199

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28488114


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged, 80 and over", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Disease-Free Survival", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Liver Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Multidetector Computed Tomography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Multivariate Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neoplasm Staging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neuroendocrine Tumors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pancreatic Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prognosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Retrospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Survival Rate", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Young Adult", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, 113-8519, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.265073.5", 
          "name": [
            "Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, 113-8519, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Oba", 
        "givenName": "Atsushi", 
        "id": "sg:person.014215735464.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014215735464.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, 113-8519, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.265073.5", 
          "name": [
            "Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, 113-8519, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kudo", 
        "givenName": "Atsushi", 
        "id": "sg:person.01240445562.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01240445562.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, 113-8519, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.265073.5", 
          "name": [
            "Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, 113-8519, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Akahoshi", 
        "givenName": "Keiichi", 
        "id": "sg:person.010751151145.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010751151145.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.265073.5", 
          "name": [
            "Department of Radiology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kishino", 
        "givenName": "Mitsuhiro", 
        "id": "sg:person.01102144677.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01102144677.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Human Pathology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.265073.5", 
          "name": [
            "Department of Human Pathology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Akashi", 
        "givenName": "Takumi", 
        "id": "sg:person.01317662345.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01317662345.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, 113-8519, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.265073.5", 
          "name": [
            "Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, 113-8519, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Katsuta", 
        "givenName": "Eriko", 
        "id": "sg:person.01255320070.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01255320070.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, 113-8519, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.265073.5", 
          "name": [
            "Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, 113-8519, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Iwao", 
        "givenName": "Yasuhito", 
        "id": "sg:person.013121332027.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013121332027.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, 113-8519, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.265073.5", 
          "name": [
            "Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, 113-8519, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ono", 
        "givenName": "Hiroaki", 
        "id": "sg:person.0743412226.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0743412226.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, 113-8519, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.265073.5", 
          "name": [
            "Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, 113-8519, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mitsunori", 
        "givenName": "Yusuke", 
        "id": "sg:person.01321050025.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01321050025.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, 113-8519, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.265073.5", 
          "name": [
            "Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, 113-8519, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ban", 
        "givenName": "Daisuke", 
        "id": "sg:person.01052235232.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01052235232.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.265073.5", 
          "name": [
            "Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tanaka", 
        "givenName": "Shinji", 
        "id": "sg:person.01003621337.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01003621337.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Human Pathology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.265073.5", 
          "name": [
            "Department of Human Pathology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Eishi", 
        "givenName": "Yoshinobu", 
        "id": "sg:person.01242554143.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01242554143.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.265073.5", 
          "name": [
            "Department of Radiology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tateishi", 
        "givenName": "Ukihide", 
        "id": "sg:person.0742073556.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742073556.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, 113-8519, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.265073.5", 
          "name": [
            "Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, 113-8519, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tanabe", 
        "givenName": "Minoru", 
        "id": "sg:person.0743300773.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0743300773.45"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00535-013-0908-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048800933", 
          "https://doi.org/10.1007/s00535-013-0908-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00535-012-0642-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014164616", 
          "https://doi.org/10.1007/s00535-012-0642-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00268-008-9585-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042462884", 
          "https://doi.org/10.1007/s00268-008-9585-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00432-016-2128-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030927241", 
          "https://doi.org/10.1007/s00432-016-2128-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00535-014-0934-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049745357", 
          "https://doi.org/10.1007/s00535-014-0934-2"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-05-09", 
    "datePublishedReg": "2017-05-09", 
    "description": "BackgroundA novel morphological classification using resected specimens predicted malignant potential and prognosis in patients with pancreatic neuroendocrine tumors (P-NETs). The aim of this study was to examine the predictive ability of morphological diagnoses made using non-invasive multi-detector computed tomography (MDCT) in P-NETs.MethodsBetween 2002 and 2015, 154 patients were diagnosed with P-NETs at the Tokyo Medical and Dental University, and 82 patients who underwent surgical treatment were enrolled. The primary tumors were classified by MDCT into three types: Type I, simple nodular tumor; Type II, simple nodular tumor with extra-nodular growth; and Type III, confluent multinodular tumor. Patients were stratified by 15 clinical specialists according to classification and without any other clinical or pathological information. Clinicopathological features and patient survival were reviewed retrospectively.ResultsThe mean observation time was 1004\u00a0days. Forty-six, 22, and 14 patients had Type I, II, and III tumors, respectively. Morphological classification was significantly correlated with advanced features such as tumor size, Ki-67 index, and synchronous liver metastasis (p\u00a0<\u00a00.001 for all). There were significant differences between all three tumor types as judged by ENETS TNM classification (p\u00a0<\u00a00.001), AJCC TNM classification (p\u00a0=\u00a00.046), WHO 2004 classification (p\u00a0<\u00a00.001), and WHO 2010 classification (p\u00a0<\u00a00.001). Five-year progression-free survival (PFS) rates for patients with Type I, II, and III tumors were 97, 43, and 31%, respectively (I vs. II, p\u00a0<\u00a00.001; I vs. III, p\u00a0<\u00a00.001; II vs. III, p\u00a0=\u00a00.017). Multivariate analysis revealed Type II/III tumors and synchronous liver metastasis to be independent risk factors for poor PFS.ConclusionA novel simple morphological classification system would predict Type II and III tumors that may have higher malignant potential than Type I tumors.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00535-017-1349-7", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.5861362", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5900559", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5867403", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6836167", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5869189", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.9339489", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1009747", 
        "issn": [
          "0944-1174", 
          "1435-5922"
        ], 
        "name": "Journal of Gastroenterology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "52"
      }
    ], 
    "keywords": [
      "synchronous liver metastases", 
      "pancreatic neuroendocrine tumors", 
      "malignant potential", 
      "liver metastases", 
      "TNM classification", 
      "neuroendocrine tumors", 
      "nodular tumor", 
      "five-year progression-free survival rate", 
      "progression-free survival rates", 
      "type I", 
      "ENETS TNM classification", 
      "AJCC TNM classification", 
      "independent risk factor", 
      "mean observation time", 
      "high malignant potential", 
      "Ki-67 index", 
      "novel morphological classification", 
      "simple morphological classification", 
      "P-NETs", 
      "MethodsBetween 2002", 
      "surgical treatment", 
      "poor PFS", 
      "clinicopathological features", 
      "patient survival", 
      "tumor size", 
      "multinodular tumors", 
      "primary tumor", 
      "type II", 
      "risk factors", 
      "Tokyo Medical", 
      "Dental University", 
      "patients", 
      "tumor types", 
      "survival rate", 
      "clinical specialists", 
      "multivariate analysis", 
      "tumors", 
      "pathological information", 
      "significant differences", 
      "type III", 
      "metastasis", 
      "morphological classification", 
      "morphological diagnosis", 
      "morphological classification system", 
      "observation time", 
      "classification system", 
      "prognosis", 
      "PFS", 
      "MDCT", 
      "predictive ability", 
      "diagnosis", 
      "survival", 
      "tomography", 
      "treatment", 
      "Medical", 
      "days", 
      "aim", 
      "classification", 
      "specialists", 
      "index", 
      "factors", 
      "differences", 
      "potential", 
      "study", 
      "specimens", 
      "types", 
      "rate", 
      "features", 
      "ability", 
      "time", 
      "analysis", 
      "growth", 
      "University", 
      "information", 
      "size", 
      "system", 
      "advanced features"
    ], 
    "name": "A simple morphological classification to estimate the malignant potential of pancreatic neuroendocrine tumors", 
    "pagination": "1140-1146", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1085377199"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00535-017-1349-7"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28488114"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00535-017-1349-7", 
      "https://app.dimensions.ai/details/publication/pub.1085377199"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_733.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00535-017-1349-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00535-017-1349-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00535-017-1349-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00535-017-1349-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00535-017-1349-7'


 

This table displays all metadata directly associated to this object as RDF triples.

343 TRIPLES      21 PREDICATES      126 URIs      113 LITERALS      26 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00535-017-1349-7 schema:about N06c921eca2964d2f933fdb7d6010631c
2 N093a4a316fe74f909b0e19fb58128db5
3 N246f2aca4cdd46b183d4bdd32eb79efe
4 N342a27d673d74ed2b4aed133ff558ade
5 N4b33cd198db543e88477e9933c77579a
6 N4cd3fb2328d24a67ab48a0806d6973d8
7 N4d8aa97023b4471f8546882b059238bc
8 N6f0c910e6006432796ddb0afd64370d6
9 N6fa07bc12f07478f81bd386123bb5bfe
10 N7eb61cd4dd9b46dda7edaf9df1715868
11 N7fc8cfd53d1b4868b1dc4b94cc03fe3b
12 N7ff5df26565142ddb6208a2ccf1e1d42
13 N859989d3188944df8205b5c12f6b1104
14 N8bcfd8421e4e4c2393a7fe3930df1d8f
15 N935506df30cc4e50add57cf54624ebf6
16 N9a12870f65ed4cb097ee0d847a4f7290
17 Nae51b5be19044180bb63f37cb82a5ac1
18 Nb2fd053b600a47b0971b715c121a0fb4
19 Nf31613062631486dbc5fdd0c0a892518
20 anzsrc-for:11
21 anzsrc-for:1112
22 schema:author N0a740dc632384a0dadc1a4f56ea4f767
23 schema:citation sg:pub.10.1007/s00268-008-9585-x
24 sg:pub.10.1007/s00432-016-2128-1
25 sg:pub.10.1007/s00535-012-0642-8
26 sg:pub.10.1007/s00535-013-0908-9
27 sg:pub.10.1007/s00535-014-0934-2
28 schema:datePublished 2017-05-09
29 schema:datePublishedReg 2017-05-09
30 schema:description BackgroundA novel morphological classification using resected specimens predicted malignant potential and prognosis in patients with pancreatic neuroendocrine tumors (P-NETs). The aim of this study was to examine the predictive ability of morphological diagnoses made using non-invasive multi-detector computed tomography (MDCT) in P-NETs.MethodsBetween 2002 and 2015, 154 patients were diagnosed with P-NETs at the Tokyo Medical and Dental University, and 82 patients who underwent surgical treatment were enrolled. The primary tumors were classified by MDCT into three types: Type I, simple nodular tumor; Type II, simple nodular tumor with extra-nodular growth; and Type III, confluent multinodular tumor. Patients were stratified by 15 clinical specialists according to classification and without any other clinical or pathological information. Clinicopathological features and patient survival were reviewed retrospectively.ResultsThe mean observation time was 1004 days. Forty-six, 22, and 14 patients had Type I, II, and III tumors, respectively. Morphological classification was significantly correlated with advanced features such as tumor size, Ki-67 index, and synchronous liver metastasis (p < 0.001 for all). There were significant differences between all three tumor types as judged by ENETS TNM classification (p < 0.001), AJCC TNM classification (p = 0.046), WHO 2004 classification (p < 0.001), and WHO 2010 classification (p < 0.001). Five-year progression-free survival (PFS) rates for patients with Type I, II, and III tumors were 97, 43, and 31%, respectively (I vs. II, p < 0.001; I vs. III, p < 0.001; II vs. III, p = 0.017). Multivariate analysis revealed Type II/III tumors and synchronous liver metastasis to be independent risk factors for poor PFS.ConclusionA novel simple morphological classification system would predict Type II and III tumors that may have higher malignant potential than Type I tumors.
31 schema:genre article
32 schema:isAccessibleForFree false
33 schema:isPartOf N04692eeadd9c4ad6929a44a3c9779911
34 N48859620005744f9a9ff33059b342a71
35 sg:journal.1009747
36 schema:keywords AJCC TNM classification
37 Dental University
38 ENETS TNM classification
39 Ki-67 index
40 MDCT
41 Medical
42 MethodsBetween 2002
43 P-NETs
44 PFS
45 TNM classification
46 Tokyo Medical
47 University
48 ability
49 advanced features
50 aim
51 analysis
52 classification
53 classification system
54 clinical specialists
55 clinicopathological features
56 days
57 diagnosis
58 differences
59 factors
60 features
61 five-year progression-free survival rate
62 growth
63 high malignant potential
64 independent risk factor
65 index
66 information
67 liver metastases
68 malignant potential
69 mean observation time
70 metastasis
71 morphological classification
72 morphological classification system
73 morphological diagnosis
74 multinodular tumors
75 multivariate analysis
76 neuroendocrine tumors
77 nodular tumor
78 novel morphological classification
79 observation time
80 pancreatic neuroendocrine tumors
81 pathological information
82 patient survival
83 patients
84 poor PFS
85 potential
86 predictive ability
87 primary tumor
88 prognosis
89 progression-free survival rates
90 rate
91 risk factors
92 significant differences
93 simple morphological classification
94 size
95 specialists
96 specimens
97 study
98 surgical treatment
99 survival
100 survival rate
101 synchronous liver metastases
102 system
103 time
104 tomography
105 treatment
106 tumor size
107 tumor types
108 tumors
109 type I
110 type II
111 type III
112 types
113 schema:name A simple morphological classification to estimate the malignant potential of pancreatic neuroendocrine tumors
114 schema:pagination 1140-1146
115 schema:productId N0a4bf2f1007e477d83a38b9839497870
116 N9aafae7c5fd5442f9952d2cb2b201f2b
117 Nf19ef238551b466abd14236aa3090902
118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085377199
119 https://doi.org/10.1007/s00535-017-1349-7
120 schema:sdDatePublished 2022-12-01T06:36
121 schema:sdLicense https://scigraph.springernature.com/explorer/license/
122 schema:sdPublisher N182cd051e8fe4873a1dfa14dc4e5062f
123 schema:url https://doi.org/10.1007/s00535-017-1349-7
124 sgo:license sg:explorer/license/
125 sgo:sdDataset articles
126 rdf:type schema:ScholarlyArticle
127 N04692eeadd9c4ad6929a44a3c9779911 schema:issueNumber 10
128 rdf:type schema:PublicationIssue
129 N06c921eca2964d2f933fdb7d6010631c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Disease-Free Survival
131 rdf:type schema:DefinedTerm
132 N093a4a316fe74f909b0e19fb58128db5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Male
134 rdf:type schema:DefinedTerm
135 N0a4bf2f1007e477d83a38b9839497870 schema:name dimensions_id
136 schema:value pub.1085377199
137 rdf:type schema:PropertyValue
138 N0a740dc632384a0dadc1a4f56ea4f767 rdf:first sg:person.014215735464.23
139 rdf:rest Nf5f0c6489ef24a04bb1cc2add7253b61
140 N182cd051e8fe4873a1dfa14dc4e5062f schema:name Springer Nature - SN SciGraph project
141 rdf:type schema:Organization
142 N19bf687a214a45ceab0a85160e9107d5 rdf:first sg:person.0742073556.08
143 rdf:rest Na3fa166596494b099968a53e9d6bb71d
144 N246f2aca4cdd46b183d4bdd32eb79efe schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Humans
146 rdf:type schema:DefinedTerm
147 N25c3d3fe1ee445bf8d70571539be835c rdf:first sg:person.01102144677.41
148 rdf:rest N6b6434f7fd4148bb838880b85fad6b31
149 N342a27d673d74ed2b4aed133ff558ade schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name Middle Aged
151 rdf:type schema:DefinedTerm
152 N48859620005744f9a9ff33059b342a71 schema:volumeNumber 52
153 rdf:type schema:PublicationVolume
154 N4b33cd198db543e88477e9933c77579a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Risk Factors
156 rdf:type schema:DefinedTerm
157 N4cd3fb2328d24a67ab48a0806d6973d8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
158 schema:name Pancreatic Neoplasms
159 rdf:type schema:DefinedTerm
160 N4d8aa97023b4471f8546882b059238bc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
161 schema:name Female
162 rdf:type schema:DefinedTerm
163 N4dbd09f86b3b48d29238fc4ac008bf35 rdf:first sg:person.013121332027.50
164 rdf:rest Nbb0438cf960944d1846360fc7d98989c
165 N64a3cf5370854b5fbc511a9ed54a5544 rdf:first sg:person.01003621337.54
166 rdf:rest N6f5ce20969854a109092b8b453009d3b
167 N6b6434f7fd4148bb838880b85fad6b31 rdf:first sg:person.01317662345.08
168 rdf:rest Nb1ba26fe0d674202bed2be80d807e0ea
169 N6f0c910e6006432796ddb0afd64370d6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
170 schema:name Multivariate Analysis
171 rdf:type schema:DefinedTerm
172 N6f5ce20969854a109092b8b453009d3b rdf:first sg:person.01242554143.18
173 rdf:rest N19bf687a214a45ceab0a85160e9107d5
174 N6fa07bc12f07478f81bd386123bb5bfe schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
175 schema:name Retrospective Studies
176 rdf:type schema:DefinedTerm
177 N7eb61cd4dd9b46dda7edaf9df1715868 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
178 schema:name Neoplasm Staging
179 rdf:type schema:DefinedTerm
180 N7fc8cfd53d1b4868b1dc4b94cc03fe3b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
181 schema:name Multidetector Computed Tomography
182 rdf:type schema:DefinedTerm
183 N7ff5df26565142ddb6208a2ccf1e1d42 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
184 schema:name Neuroendocrine Tumors
185 rdf:type schema:DefinedTerm
186 N82eb0218b3cd4faaaac4ad7e38bae425 rdf:first sg:person.010751151145.12
187 rdf:rest N25c3d3fe1ee445bf8d70571539be835c
188 N859989d3188944df8205b5c12f6b1104 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
189 schema:name Aged, 80 and over
190 rdf:type schema:DefinedTerm
191 N8bcfd8421e4e4c2393a7fe3930df1d8f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
192 schema:name Prognosis
193 rdf:type schema:DefinedTerm
194 N935506df30cc4e50add57cf54624ebf6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
195 schema:name Aged
196 rdf:type schema:DefinedTerm
197 N99cd0c5c464c4404a8518e2aec9406eb rdf:first sg:person.01052235232.37
198 rdf:rest N64a3cf5370854b5fbc511a9ed54a5544
199 N9a12870f65ed4cb097ee0d847a4f7290 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
200 schema:name Adult
201 rdf:type schema:DefinedTerm
202 N9aafae7c5fd5442f9952d2cb2b201f2b schema:name pubmed_id
203 schema:value 28488114
204 rdf:type schema:PropertyValue
205 Na3fa166596494b099968a53e9d6bb71d rdf:first sg:person.0743300773.45
206 rdf:rest rdf:nil
207 Nad463b3cd13e4890ba4ab6dc86b8fea2 rdf:first sg:person.01321050025.65
208 rdf:rest N99cd0c5c464c4404a8518e2aec9406eb
209 Nae51b5be19044180bb63f37cb82a5ac1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
210 schema:name Liver Neoplasms
211 rdf:type schema:DefinedTerm
212 Nb1ba26fe0d674202bed2be80d807e0ea rdf:first sg:person.01255320070.45
213 rdf:rest N4dbd09f86b3b48d29238fc4ac008bf35
214 Nb2fd053b600a47b0971b715c121a0fb4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
215 schema:name Survival Rate
216 rdf:type schema:DefinedTerm
217 Nbb0438cf960944d1846360fc7d98989c rdf:first sg:person.0743412226.83
218 rdf:rest Nad463b3cd13e4890ba4ab6dc86b8fea2
219 Nf19ef238551b466abd14236aa3090902 schema:name doi
220 schema:value 10.1007/s00535-017-1349-7
221 rdf:type schema:PropertyValue
222 Nf31613062631486dbc5fdd0c0a892518 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
223 schema:name Young Adult
224 rdf:type schema:DefinedTerm
225 Nf5f0c6489ef24a04bb1cc2add7253b61 rdf:first sg:person.01240445562.87
226 rdf:rest N82eb0218b3cd4faaaac4ad7e38bae425
227 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
228 schema:name Medical and Health Sciences
229 rdf:type schema:DefinedTerm
230 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
231 schema:name Oncology and Carcinogenesis
232 rdf:type schema:DefinedTerm
233 sg:grant.5861362 http://pending.schema.org/fundedItem sg:pub.10.1007/s00535-017-1349-7
234 rdf:type schema:MonetaryGrant
235 sg:grant.5867403 http://pending.schema.org/fundedItem sg:pub.10.1007/s00535-017-1349-7
236 rdf:type schema:MonetaryGrant
237 sg:grant.5869189 http://pending.schema.org/fundedItem sg:pub.10.1007/s00535-017-1349-7
238 rdf:type schema:MonetaryGrant
239 sg:grant.5900559 http://pending.schema.org/fundedItem sg:pub.10.1007/s00535-017-1349-7
240 rdf:type schema:MonetaryGrant
241 sg:grant.6836167 http://pending.schema.org/fundedItem sg:pub.10.1007/s00535-017-1349-7
242 rdf:type schema:MonetaryGrant
243 sg:grant.9339489 http://pending.schema.org/fundedItem sg:pub.10.1007/s00535-017-1349-7
244 rdf:type schema:MonetaryGrant
245 sg:journal.1009747 schema:issn 0944-1174
246 1435-5922
247 schema:name Journal of Gastroenterology
248 schema:publisher Springer Nature
249 rdf:type schema:Periodical
250 sg:person.01003621337.54 schema:affiliation grid-institutes:grid.265073.5
251 schema:familyName Tanaka
252 schema:givenName Shinji
253 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01003621337.54
254 rdf:type schema:Person
255 sg:person.01052235232.37 schema:affiliation grid-institutes:grid.265073.5
256 schema:familyName Ban
257 schema:givenName Daisuke
258 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01052235232.37
259 rdf:type schema:Person
260 sg:person.010751151145.12 schema:affiliation grid-institutes:grid.265073.5
261 schema:familyName Akahoshi
262 schema:givenName Keiichi
263 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010751151145.12
264 rdf:type schema:Person
265 sg:person.01102144677.41 schema:affiliation grid-institutes:grid.265073.5
266 schema:familyName Kishino
267 schema:givenName Mitsuhiro
268 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01102144677.41
269 rdf:type schema:Person
270 sg:person.01240445562.87 schema:affiliation grid-institutes:grid.265073.5
271 schema:familyName Kudo
272 schema:givenName Atsushi
273 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01240445562.87
274 rdf:type schema:Person
275 sg:person.01242554143.18 schema:affiliation grid-institutes:grid.265073.5
276 schema:familyName Eishi
277 schema:givenName Yoshinobu
278 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01242554143.18
279 rdf:type schema:Person
280 sg:person.01255320070.45 schema:affiliation grid-institutes:grid.265073.5
281 schema:familyName Katsuta
282 schema:givenName Eriko
283 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01255320070.45
284 rdf:type schema:Person
285 sg:person.013121332027.50 schema:affiliation grid-institutes:grid.265073.5
286 schema:familyName Iwao
287 schema:givenName Yasuhito
288 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013121332027.50
289 rdf:type schema:Person
290 sg:person.01317662345.08 schema:affiliation grid-institutes:grid.265073.5
291 schema:familyName Akashi
292 schema:givenName Takumi
293 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01317662345.08
294 rdf:type schema:Person
295 sg:person.01321050025.65 schema:affiliation grid-institutes:grid.265073.5
296 schema:familyName Mitsunori
297 schema:givenName Yusuke
298 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01321050025.65
299 rdf:type schema:Person
300 sg:person.014215735464.23 schema:affiliation grid-institutes:grid.265073.5
301 schema:familyName Oba
302 schema:givenName Atsushi
303 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014215735464.23
304 rdf:type schema:Person
305 sg:person.0742073556.08 schema:affiliation grid-institutes:grid.265073.5
306 schema:familyName Tateishi
307 schema:givenName Ukihide
308 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742073556.08
309 rdf:type schema:Person
310 sg:person.0743300773.45 schema:affiliation grid-institutes:grid.265073.5
311 schema:familyName Tanabe
312 schema:givenName Minoru
313 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0743300773.45
314 rdf:type schema:Person
315 sg:person.0743412226.83 schema:affiliation grid-institutes:grid.265073.5
316 schema:familyName Ono
317 schema:givenName Hiroaki
318 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0743412226.83
319 rdf:type schema:Person
320 sg:pub.10.1007/s00268-008-9585-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1042462884
321 https://doi.org/10.1007/s00268-008-9585-x
322 rdf:type schema:CreativeWork
323 sg:pub.10.1007/s00432-016-2128-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030927241
324 https://doi.org/10.1007/s00432-016-2128-1
325 rdf:type schema:CreativeWork
326 sg:pub.10.1007/s00535-012-0642-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014164616
327 https://doi.org/10.1007/s00535-012-0642-8
328 rdf:type schema:CreativeWork
329 sg:pub.10.1007/s00535-013-0908-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048800933
330 https://doi.org/10.1007/s00535-013-0908-9
331 rdf:type schema:CreativeWork
332 sg:pub.10.1007/s00535-014-0934-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049745357
333 https://doi.org/10.1007/s00535-014-0934-2
334 rdf:type schema:CreativeWork
335 grid-institutes:grid.265073.5 schema:alternateName Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, 113-8519, Tokyo, Japan
336 Department of Human Pathology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
337 Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
338 Department of Radiology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
339 schema:name Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, 113-8519, Tokyo, Japan
340 Department of Human Pathology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
341 Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
342 Department of Radiology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
343 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...