Body mass index is the most useful predictive factor for the onset of nonalcoholic fatty liver disease: a community-based retrospective ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-08-31

AUTHORS

Teruki Miyake, Teru Kumagi, Masashi Hirooka, Shinya Furukawa, Mitsuhito Koizumi, Yoshio Tokumoto, Teruhisa Ueda, Shin Yamamoto, Masanori Abe, Kohichiro Kitai, Yoichi Hiasa, Bunzo Matsuura, Morikazu Onji

ABSTRACT

BackgroundNonalcoholic fatty liver disease (NAFLD) can progress to advanced liver disease and non-liver-related diseases. To prevent NAFLD onset, clinicians must be able to easily identify high-risk NAFLD patients so that intervention can begin at an earlier stage. We sought to identify the predictive factors for NAFLD onset.MethodsIn a community-based, longitudinal design, the records of 6,403 Japanese subjects were reviewed to identify those meeting the criteria for NAFLD onset. Univariate and multivariate logistic regression analyses were used to identify predictive factors for NAFLD onset. The accuracy of different models was evaluated according to their areas under the receiver operating characteristic curves. Comparative risk analysis was performed using the Kaplan–Meier method.ResultsMultivariate analysis of 400 subjects who met the criteria for the onset of NAFLD during the observation period confirmed that body mass index (BMI) at baseline was the most useful predictive factor for NAFLD onset in both sexes. Cutoff levels of BMI for NAFLD onset were estimated at 23 kg/m2 for men and 22.2 kg/m2 for women. The cumulative onset rate of NAFLD was significantly higher in the high BMI group than in the low BMI group in both sexes (P < 0.001).ConclusionBMI was confirmed as the most useful predictive factor for NAFLD onset in both sexes; its cutoff levels were similar to those recommended by the World Health Organization for helping to prevent metabolic disease. An accurate BMI cutoff level will enable clinicians to identify subjects at risk for NAFLD onset. More... »

PAGES

413-422

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00535-012-0650-8

DOI

http://dx.doi.org/10.1007/s00535-012-0650-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1020350237

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/22933183


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adolescent", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged, 80 and over", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biomarkers", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Body Mass Index", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Early Diagnosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fatty Liver", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Japan", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Longitudinal Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Non-alcoholic Fatty Liver Disease", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Retrospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sex Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Young Adult", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, 791-0295, Toon, Ehime, Japan", 
          "id": "http://www.grid.ac/institutes/grid.255464.4", 
          "name": [
            "Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, 791-0295, Toon, Ehime, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Miyake", 
        "givenName": "Teruki", 
        "id": "sg:person.01322775103.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01322775103.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, 791-0295, Toon, Ehime, Japan", 
          "id": "http://www.grid.ac/institutes/grid.255464.4", 
          "name": [
            "Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, 791-0295, Toon, Ehime, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kumagi", 
        "givenName": "Teru", 
        "id": "sg:person.01066054314.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066054314.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, 791-0295, Toon, Ehime, Japan", 
          "id": "http://www.grid.ac/institutes/grid.255464.4", 
          "name": [
            "Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, 791-0295, Toon, Ehime, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hirooka", 
        "givenName": "Masashi", 
        "id": "sg:person.01264716052.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01264716052.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, 791-0295, Toon, Ehime, Japan", 
          "id": "http://www.grid.ac/institutes/grid.255464.4", 
          "name": [
            "Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, 791-0295, Toon, Ehime, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Furukawa", 
        "givenName": "Shinya", 
        "id": "sg:person.0644725370.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0644725370.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ehime General Health Care Association, 790-0814, Matsuyama, Ehime, Japan", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, 791-0295, Toon, Ehime, Japan", 
            "Ehime General Health Care Association, 790-0814, Matsuyama, Ehime, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Koizumi", 
        "givenName": "Mitsuhito", 
        "id": "sg:person.01327232574.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01327232574.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, 791-0295, Toon, Ehime, Japan", 
          "id": "http://www.grid.ac/institutes/grid.255464.4", 
          "name": [
            "Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, 791-0295, Toon, Ehime, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tokumoto", 
        "givenName": "Yoshio", 
        "id": "sg:person.01042071567.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01042071567.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, 791-0295, Toon, Ehime, Japan", 
          "id": "http://www.grid.ac/institutes/grid.255464.4", 
          "name": [
            "Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, 791-0295, Toon, Ehime, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ueda", 
        "givenName": "Teruhisa", 
        "id": "sg:person.01332611021.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01332611021.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, 791-0295, Toon, Ehime, Japan", 
          "id": "http://www.grid.ac/institutes/grid.255464.4", 
          "name": [
            "Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, 791-0295, Toon, Ehime, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yamamoto", 
        "givenName": "Shin", 
        "id": "sg:person.0752122500.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0752122500.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, 791-0295, Toon, Ehime, Japan", 
          "id": "http://www.grid.ac/institutes/grid.255464.4", 
          "name": [
            "Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, 791-0295, Toon, Ehime, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Abe", 
        "givenName": "Masanori", 
        "id": "sg:person.014763264214.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014763264214.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ehime General Health Care Association, 790-0814, Matsuyama, Ehime, Japan", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Ehime General Health Care Association, 790-0814, Matsuyama, Ehime, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kitai", 
        "givenName": "Kohichiro", 
        "id": "sg:person.01260203023.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260203023.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, 791-0295, Toon, Ehime, Japan", 
          "id": "http://www.grid.ac/institutes/grid.255464.4", 
          "name": [
            "Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, 791-0295, Toon, Ehime, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hiasa", 
        "givenName": "Yoichi", 
        "id": "sg:person.01333031252.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333031252.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, 791-0295, Toon, Ehime, Japan", 
          "id": "http://www.grid.ac/institutes/grid.255464.4", 
          "name": [
            "Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, 791-0295, Toon, Ehime, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Matsuura", 
        "givenName": "Bunzo", 
        "id": "sg:person.0607425152.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0607425152.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, 791-0295, Toon, Ehime, Japan", 
          "id": "http://www.grid.ac/institutes/grid.255464.4", 
          "name": [
            "Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, 791-0295, Toon, Ehime, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Onji", 
        "givenName": "Morikazu", 
        "id": "sg:person.0723653552.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0723653552.71"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/sj.ijo.0802486", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034517990", 
          "https://doi.org/10.1038/sj.ijo.0802486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00535-003-1178-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005542799", 
          "https://doi.org/10.1007/s00535-003-1178-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncpgasthep0879", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000994262", 
          "https://doi.org/10.1038/ncpgasthep0879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00535-012-0534-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025763877", 
          "https://doi.org/10.1007/s00535-012-0534-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1005661516165", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001489991", 
          "https://doi.org/10.1023/a:1005661516165"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-08-31", 
    "datePublishedReg": "2012-08-31", 
    "description": "BackgroundNonalcoholic fatty liver disease (NAFLD) can progress to advanced liver disease and non-liver-related diseases. To prevent NAFLD onset, clinicians must be able to easily identify high-risk NAFLD patients so that intervention can begin at an earlier stage. We sought to identify the predictive factors for NAFLD onset.MethodsIn a community-based, longitudinal design, the records of 6,403 Japanese subjects were reviewed to identify those meeting the criteria for NAFLD onset. Univariate and multivariate logistic regression analyses were used to identify predictive factors for NAFLD onset. The accuracy of different models was evaluated according to their areas under the receiver operating characteristic curves. Comparative risk analysis was performed using the Kaplan\u2013Meier method.ResultsMultivariate analysis of 400 subjects who met the criteria for the onset of NAFLD during the observation period confirmed that body mass index (BMI) at baseline was the most useful predictive factor for NAFLD onset in both sexes. Cutoff levels of BMI for NAFLD onset were estimated at 23\u00a0kg/m2 for men and 22.2\u00a0kg/m2 for women. The cumulative onset rate of NAFLD was significantly higher in the high BMI group than in the low BMI group in both sexes (P\u00a0<\u00a00.001).ConclusionBMI was confirmed as the most useful predictive factor for NAFLD onset in both sexes; its cutoff levels were similar to those recommended by the World Health Organization for helping to prevent metabolic disease. An accurate BMI cutoff level will enable clinicians to identify subjects at risk for NAFLD onset.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00535-012-0650-8", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6068567", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6067068", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1009747", 
        "issn": [
          "0944-1174", 
          "1435-5922"
        ], 
        "name": "Journal of Gastroenterology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "48"
      }
    ], 
    "keywords": [
      "body mass index", 
      "useful predictive factor", 
      "NAFLD onset", 
      "fatty liver disease", 
      "predictive factors", 
      "liver disease", 
      "cutoff level", 
      "BMI groups", 
      "mass index", 
      "high-risk NAFLD patients", 
      "nonalcoholic fatty liver disease", 
      "retrospective longitudinal cohort study", 
      "BackgroundNonalcoholic fatty liver disease", 
      "onset of NAFLD", 
      "advanced liver disease", 
      "Kaplan-Meier method", 
      "high BMI group", 
      "low BMI group", 
      "longitudinal cohort study", 
      "logistic regression analysis", 
      "World Health Organization", 
      "NAFLD patients", 
      "cohort study", 
      "ResultsMultivariate analysis", 
      "metabolic diseases", 
      "Japanese subjects", 
      "disease", 
      "Health Organization", 
      "observation period", 
      "onset rate", 
      "NAFLD", 
      "characteristic curve", 
      "regression analysis", 
      "onset", 
      "sex", 
      "clinicians", 
      "subjects", 
      "longitudinal design", 
      "early stages", 
      "ConclusionBMI", 
      "patients", 
      "factors", 
      "group", 
      "levels", 
      "MethodsIn", 
      "baseline", 
      "women", 
      "index", 
      "intervention", 
      "men", 
      "risk", 
      "criteria", 
      "comparative risk analysis", 
      "m2", 
      "period", 
      "records", 
      "analysis", 
      "study", 
      "rate", 
      "stage", 
      "risk analysis", 
      "receiver", 
      "curves", 
      "area", 
      "different models", 
      "method", 
      "model", 
      "organization", 
      "design", 
      "accuracy"
    ], 
    "name": "Body mass index is the most useful predictive factor for the onset of nonalcoholic fatty liver disease: a community-based retrospective longitudinal cohort study", 
    "pagination": "413-422", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1020350237"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00535-012-0650-8"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "22933183"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00535-012-0650-8", 
      "https://app.dimensions.ai/details/publication/pub.1020350237"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:30", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_566.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00535-012-0650-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00535-012-0650-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00535-012-0650-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00535-012-0650-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00535-012-0650-8'


 

This table displays all metadata directly associated to this object as RDF triples.

319 TRIPLES      21 PREDICATES      119 URIs      106 LITERALS      26 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00535-012-0650-8 schema:about N07b9f7fa4abb418abfa96cd477560a1e
2 N20ac2096d2e64aa0bd34dc0607168911
3 N26bad1f5b6a44043942d62c3d84df541
4 N4617fd5311ad4cf886b73790768abc93
5 N489d863f0a0d485b9137098feaf520df
6 N4e240c45eebe437ea5da509f248007f7
7 N5b597a54dd524cc88f0e13244cf033f6
8 N79c9c48b0ad04edab9bcdfaae7c92bbb
9 N812b45ac3891455b8e47d92de64d77cc
10 N862ec7620be04bde897d8bb270cd4869
11 N97fb0c43455a408dabe4035f89c05df8
12 Na39de5c097904faf9bd9cecfc3716457
13 Nada5e008d0c04778b8b11e5927a94dc4
14 Nb114414e1d524d769cfc217f1005d3bd
15 Nbd228fe8fb204314a214a0cf6f12cd9a
16 Nbe7a4269690c401885001c2269951240
17 Nc700c51662d04bb78de9dce512fe7b6f
18 Ne40015ab08d14d61b138f6804a2897cd
19 Nf82144dc99c5499296f6cf136fdd054d
20 anzsrc-for:11
21 anzsrc-for:1117
22 schema:author N8c13ab63e7f84349a4b403c3581852e6
23 schema:citation sg:pub.10.1007/s00535-003-1178-8
24 sg:pub.10.1007/s00535-012-0534-y
25 sg:pub.10.1023/a:1005661516165
26 sg:pub.10.1038/ncpgasthep0879
27 sg:pub.10.1038/sj.ijo.0802486
28 schema:datePublished 2012-08-31
29 schema:datePublishedReg 2012-08-31
30 schema:description BackgroundNonalcoholic fatty liver disease (NAFLD) can progress to advanced liver disease and non-liver-related diseases. To prevent NAFLD onset, clinicians must be able to easily identify high-risk NAFLD patients so that intervention can begin at an earlier stage. We sought to identify the predictive factors for NAFLD onset.MethodsIn a community-based, longitudinal design, the records of 6,403 Japanese subjects were reviewed to identify those meeting the criteria for NAFLD onset. Univariate and multivariate logistic regression analyses were used to identify predictive factors for NAFLD onset. The accuracy of different models was evaluated according to their areas under the receiver operating characteristic curves. Comparative risk analysis was performed using the Kaplan–Meier method.ResultsMultivariate analysis of 400 subjects who met the criteria for the onset of NAFLD during the observation period confirmed that body mass index (BMI) at baseline was the most useful predictive factor for NAFLD onset in both sexes. Cutoff levels of BMI for NAFLD onset were estimated at 23 kg/m2 for men and 22.2 kg/m2 for women. The cumulative onset rate of NAFLD was significantly higher in the high BMI group than in the low BMI group in both sexes (P < 0.001).ConclusionBMI was confirmed as the most useful predictive factor for NAFLD onset in both sexes; its cutoff levels were similar to those recommended by the World Health Organization for helping to prevent metabolic disease. An accurate BMI cutoff level will enable clinicians to identify subjects at risk for NAFLD onset.
31 schema:genre article
32 schema:isAccessibleForFree false
33 schema:isPartOf N05b689a59b404f438e3ed84f238187a2
34 Nff0bde137fc24cf995864cb841a3ecbf
35 sg:journal.1009747
36 schema:keywords BMI groups
37 BackgroundNonalcoholic fatty liver disease
38 ConclusionBMI
39 Health Organization
40 Japanese subjects
41 Kaplan-Meier method
42 MethodsIn
43 NAFLD
44 NAFLD onset
45 NAFLD patients
46 ResultsMultivariate analysis
47 World Health Organization
48 accuracy
49 advanced liver disease
50 analysis
51 area
52 baseline
53 body mass index
54 characteristic curve
55 clinicians
56 cohort study
57 comparative risk analysis
58 criteria
59 curves
60 cutoff level
61 design
62 different models
63 disease
64 early stages
65 factors
66 fatty liver disease
67 group
68 high BMI group
69 high-risk NAFLD patients
70 index
71 intervention
72 levels
73 liver disease
74 logistic regression analysis
75 longitudinal cohort study
76 longitudinal design
77 low BMI group
78 m2
79 mass index
80 men
81 metabolic diseases
82 method
83 model
84 nonalcoholic fatty liver disease
85 observation period
86 onset
87 onset of NAFLD
88 onset rate
89 organization
90 patients
91 period
92 predictive factors
93 rate
94 receiver
95 records
96 regression analysis
97 retrospective longitudinal cohort study
98 risk
99 risk analysis
100 sex
101 stage
102 study
103 subjects
104 useful predictive factor
105 women
106 schema:name Body mass index is the most useful predictive factor for the onset of nonalcoholic fatty liver disease: a community-based retrospective longitudinal cohort study
107 schema:pagination 413-422
108 schema:productId Nb8a9e96fb47545d69b408aa4282113c1
109 Nd3532257e01c4f25af94a23da3d25064
110 Nf22d55b192e541e0aac38e06c04cbe8a
111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020350237
112 https://doi.org/10.1007/s00535-012-0650-8
113 schema:sdDatePublished 2022-12-01T06:30
114 schema:sdLicense https://scigraph.springernature.com/explorer/license/
115 schema:sdPublisher N1087cd23a4044f8dad7bdff52619153b
116 schema:url https://doi.org/10.1007/s00535-012-0650-8
117 sgo:license sg:explorer/license/
118 sgo:sdDataset articles
119 rdf:type schema:ScholarlyArticle
120 N04fcfa2483db4d7c92bb9870d642f18c rdf:first sg:person.0752122500.33
121 rdf:rest Nf78fd8d85f2b44e1879b9367aa80af25
122 N05b689a59b404f438e3ed84f238187a2 schema:volumeNumber 48
123 rdf:type schema:PublicationVolume
124 N07b9f7fa4abb418abfa96cd477560a1e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Early Diagnosis
126 rdf:type schema:DefinedTerm
127 N1087cd23a4044f8dad7bdff52619153b schema:name Springer Nature - SN SciGraph project
128 rdf:type schema:Organization
129 N1c4f5a5ad3a44226befb286be673b81d rdf:first sg:person.01333031252.69
130 rdf:rest N83edafbf1aa24d22bedc456919ff7114
131 N1ec913aa52354d81856565fc76b124c9 rdf:first sg:person.0644725370.29
132 rdf:rest Nce6065d58fd04b63a08c7fcf4d20f252
133 N20ac2096d2e64aa0bd34dc0607168911 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Retrospective Studies
135 rdf:type schema:DefinedTerm
136 N26bad1f5b6a44043942d62c3d84df541 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Fatty Liver
138 rdf:type schema:DefinedTerm
139 N272967231f6144248b1308ac0f9879ef rdf:first sg:person.01066054314.49
140 rdf:rest Ndeb177c272f040e588205d38b459a674
141 N4617fd5311ad4cf886b73790768abc93 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Middle Aged
143 rdf:type schema:DefinedTerm
144 N489d863f0a0d485b9137098feaf520df schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Non-alcoholic Fatty Liver Disease
146 rdf:type schema:DefinedTerm
147 N4e240c45eebe437ea5da509f248007f7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Female
149 rdf:type schema:DefinedTerm
150 N5b597a54dd524cc88f0e13244cf033f6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Aged
152 rdf:type schema:DefinedTerm
153 N79c9c48b0ad04edab9bcdfaae7c92bbb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Risk Factors
155 rdf:type schema:DefinedTerm
156 N812b45ac3891455b8e47d92de64d77cc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
157 schema:name Body Mass Index
158 rdf:type schema:DefinedTerm
159 N83edafbf1aa24d22bedc456919ff7114 rdf:first sg:person.0607425152.67
160 rdf:rest Nc4758d3b5a1f428f8086e50ab0215619
161 N862ec7620be04bde897d8bb270cd4869 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
162 schema:name Sex Factors
163 rdf:type schema:DefinedTerm
164 N8c13ab63e7f84349a4b403c3581852e6 rdf:first sg:person.01322775103.66
165 rdf:rest N272967231f6144248b1308ac0f9879ef
166 N97fb0c43455a408dabe4035f89c05df8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
167 schema:name Biomarkers
168 rdf:type schema:DefinedTerm
169 Na39de5c097904faf9bd9cecfc3716457 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
170 schema:name Aged, 80 and over
171 rdf:type schema:DefinedTerm
172 Nada5e008d0c04778b8b11e5927a94dc4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
173 schema:name Humans
174 rdf:type schema:DefinedTerm
175 Nb114414e1d524d769cfc217f1005d3bd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
176 schema:name Adult
177 rdf:type schema:DefinedTerm
178 Nb1fc30a33b354936938df018d97cb468 rdf:first sg:person.01042071567.97
179 rdf:rest Nebd7359195a74bc38a8fc57a87ae2d49
180 Nb8a9e96fb47545d69b408aa4282113c1 schema:name pubmed_id
181 schema:value 22933183
182 rdf:type schema:PropertyValue
183 Nbd228fe8fb204314a214a0cf6f12cd9a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
184 schema:name Adolescent
185 rdf:type schema:DefinedTerm
186 Nbe7a4269690c401885001c2269951240 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
187 schema:name Young Adult
188 rdf:type schema:DefinedTerm
189 Nc4758d3b5a1f428f8086e50ab0215619 rdf:first sg:person.0723653552.71
190 rdf:rest rdf:nil
191 Nc700c51662d04bb78de9dce512fe7b6f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
192 schema:name Male
193 rdf:type schema:DefinedTerm
194 Nce6065d58fd04b63a08c7fcf4d20f252 rdf:first sg:person.01327232574.06
195 rdf:rest Nb1fc30a33b354936938df018d97cb468
196 Nd330908cb2a0403d9590528571065c29 rdf:first sg:person.01260203023.43
197 rdf:rest N1c4f5a5ad3a44226befb286be673b81d
198 Nd3532257e01c4f25af94a23da3d25064 schema:name dimensions_id
199 schema:value pub.1020350237
200 rdf:type schema:PropertyValue
201 Ndeb177c272f040e588205d38b459a674 rdf:first sg:person.01264716052.47
202 rdf:rest N1ec913aa52354d81856565fc76b124c9
203 Ne40015ab08d14d61b138f6804a2897cd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
204 schema:name Japan
205 rdf:type schema:DefinedTerm
206 Nebd7359195a74bc38a8fc57a87ae2d49 rdf:first sg:person.01332611021.09
207 rdf:rest N04fcfa2483db4d7c92bb9870d642f18c
208 Nf22d55b192e541e0aac38e06c04cbe8a schema:name doi
209 schema:value 10.1007/s00535-012-0650-8
210 rdf:type schema:PropertyValue
211 Nf78fd8d85f2b44e1879b9367aa80af25 rdf:first sg:person.014763264214.31
212 rdf:rest Nd330908cb2a0403d9590528571065c29
213 Nf82144dc99c5499296f6cf136fdd054d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
214 schema:name Longitudinal Studies
215 rdf:type schema:DefinedTerm
216 Nff0bde137fc24cf995864cb841a3ecbf schema:issueNumber 3
217 rdf:type schema:PublicationIssue
218 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
219 schema:name Medical and Health Sciences
220 rdf:type schema:DefinedTerm
221 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
222 schema:name Public Health and Health Services
223 rdf:type schema:DefinedTerm
224 sg:grant.6067068 http://pending.schema.org/fundedItem sg:pub.10.1007/s00535-012-0650-8
225 rdf:type schema:MonetaryGrant
226 sg:grant.6068567 http://pending.schema.org/fundedItem sg:pub.10.1007/s00535-012-0650-8
227 rdf:type schema:MonetaryGrant
228 sg:journal.1009747 schema:issn 0944-1174
229 1435-5922
230 schema:name Journal of Gastroenterology
231 schema:publisher Springer Nature
232 rdf:type schema:Periodical
233 sg:person.01042071567.97 schema:affiliation grid-institutes:grid.255464.4
234 schema:familyName Tokumoto
235 schema:givenName Yoshio
236 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01042071567.97
237 rdf:type schema:Person
238 sg:person.01066054314.49 schema:affiliation grid-institutes:grid.255464.4
239 schema:familyName Kumagi
240 schema:givenName Teru
241 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066054314.49
242 rdf:type schema:Person
243 sg:person.01260203023.43 schema:affiliation grid-institutes:None
244 schema:familyName Kitai
245 schema:givenName Kohichiro
246 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260203023.43
247 rdf:type schema:Person
248 sg:person.01264716052.47 schema:affiliation grid-institutes:grid.255464.4
249 schema:familyName Hirooka
250 schema:givenName Masashi
251 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01264716052.47
252 rdf:type schema:Person
253 sg:person.01322775103.66 schema:affiliation grid-institutes:grid.255464.4
254 schema:familyName Miyake
255 schema:givenName Teruki
256 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01322775103.66
257 rdf:type schema:Person
258 sg:person.01327232574.06 schema:affiliation grid-institutes:None
259 schema:familyName Koizumi
260 schema:givenName Mitsuhito
261 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01327232574.06
262 rdf:type schema:Person
263 sg:person.01332611021.09 schema:affiliation grid-institutes:grid.255464.4
264 schema:familyName Ueda
265 schema:givenName Teruhisa
266 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01332611021.09
267 rdf:type schema:Person
268 sg:person.01333031252.69 schema:affiliation grid-institutes:grid.255464.4
269 schema:familyName Hiasa
270 schema:givenName Yoichi
271 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333031252.69
272 rdf:type schema:Person
273 sg:person.014763264214.31 schema:affiliation grid-institutes:grid.255464.4
274 schema:familyName Abe
275 schema:givenName Masanori
276 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014763264214.31
277 rdf:type schema:Person
278 sg:person.0607425152.67 schema:affiliation grid-institutes:grid.255464.4
279 schema:familyName Matsuura
280 schema:givenName Bunzo
281 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0607425152.67
282 rdf:type schema:Person
283 sg:person.0644725370.29 schema:affiliation grid-institutes:grid.255464.4
284 schema:familyName Furukawa
285 schema:givenName Shinya
286 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0644725370.29
287 rdf:type schema:Person
288 sg:person.0723653552.71 schema:affiliation grid-institutes:grid.255464.4
289 schema:familyName Onji
290 schema:givenName Morikazu
291 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0723653552.71
292 rdf:type schema:Person
293 sg:person.0752122500.33 schema:affiliation grid-institutes:grid.255464.4
294 schema:familyName Yamamoto
295 schema:givenName Shin
296 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0752122500.33
297 rdf:type schema:Person
298 sg:pub.10.1007/s00535-003-1178-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005542799
299 https://doi.org/10.1007/s00535-003-1178-8
300 rdf:type schema:CreativeWork
301 sg:pub.10.1007/s00535-012-0534-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1025763877
302 https://doi.org/10.1007/s00535-012-0534-y
303 rdf:type schema:CreativeWork
304 sg:pub.10.1023/a:1005661516165 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001489991
305 https://doi.org/10.1023/a:1005661516165
306 rdf:type schema:CreativeWork
307 sg:pub.10.1038/ncpgasthep0879 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000994262
308 https://doi.org/10.1038/ncpgasthep0879
309 rdf:type schema:CreativeWork
310 sg:pub.10.1038/sj.ijo.0802486 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034517990
311 https://doi.org/10.1038/sj.ijo.0802486
312 rdf:type schema:CreativeWork
313 grid-institutes:None schema:alternateName Ehime General Health Care Association, 790-0814, Matsuyama, Ehime, Japan
314 schema:name Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, 791-0295, Toon, Ehime, Japan
315 Ehime General Health Care Association, 790-0814, Matsuyama, Ehime, Japan
316 rdf:type schema:Organization
317 grid-institutes:grid.255464.4 schema:alternateName Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, 791-0295, Toon, Ehime, Japan
318 schema:name Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, 791-0295, Toon, Ehime, Japan
319 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...