Efficient lossless compression for depth information in traffic scenarios View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02-08

AUTHORS

Qing Rao, Samarjit Chakraborty

ABSTRACT

Modern day automotive features (e.g., in-vehicle augmented reality) require a depth of the environment as the input source. It is important that depth data can be transferred from one processing unit to another in a car. About 10 years ago, Stixel has been introduced as a mid-level representation of depth maps (disparities) which reduces the data volume thereof significantly. Since then, Stixel has been extensively researched and is nowadays a seriously considered solution for series production cars. Nevertheless, even after using a Stixel representation, the depth data can hardly fit into a low- or medium-bandwidth in-vehicle communication system, e.g., via a CAN bus. Hence, the cost-sensitive automotive industry is still seeking new solutions for the transmission of depth information using in-vehicle communication buses. In this paper, we present an efficient lossless compression scheme for Stixels as a potential solution to this problem. Our proposed algorithm removes both spatial and temporal redundancies in Stixels through a combination of predictive modeling and entropy coding. Evaluation shows that it outperforms general purpose compression schemes, e.g., zlib, by more than 60% in space savings. More importantly, we prove that using the proposed Stixel compression, depth information could be transmitted through a less expensive CAN bus, whereas a much more expensive FlexRay bus is needed otherwise. We believe that this finding has great relevance for the automotive industry. More... »

PAGES

1-14

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00530-019-00605-z

DOI

http://dx.doi.org/10.1007/s00530-019-00605-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112024668


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0804", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Data Format", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Daimler (Germany)", 
          "id": "https://www.grid.ac/institutes/grid.5433.1", 
          "name": [
            "Technical University of Munich, Arcisstr. 21, 80333, Munich, Germany", 
            "Daimler AG, Research and Development, Benz Str., 71063, Sindelfingen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rao", 
        "givenName": "Qing", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University Munich", 
          "id": "https://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Technical University of Munich, Arcisstr. 21, 80333, Munich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chakraborty", 
        "givenName": "Samarjit", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00530-008-0144-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000001807", 
          "https://doi.org/10.1007/s00530-008-0144-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00530-008-0144-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000001807", 
          "https://doi.org/10.1007/s00530-008-0144-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1014554110407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018291876", 
          "https://doi.org/10.1023/a:1014554110407"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-45886-1_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019425063", 
          "https://doi.org/10.1007/978-3-319-45886-1_2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1024672920", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-8348-9188-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024672920", 
          "https://doi.org/10.1007/978-3-8348-9188-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-8348-9188-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024672920", 
          "https://doi.org/10.1007/978-3-8348-9188-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00530-012-0282-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026103914", 
          "https://doi.org/10.1007/s00530-012-0282-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-03798-6_6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028871754", 
          "https://doi.org/10.1007/978-3-642-03798-6_6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10707-015-0231-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032712436", 
          "https://doi.org/10.1007/s10707-015-0231-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00530-008-0150-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033795381", 
          "https://doi.org/10.1007/s00530-008-0150-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00530-008-0150-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033795381", 
          "https://doi.org/10.1007/s00530-008-0150-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-04667-4_14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037474919", 
          "https://doi.org/10.1007/978-3-642-04667-4_14"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-04667-4_14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037474919", 
          "https://doi.org/10.1007/978-3-642-04667-4_14"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/j.1538-7305.1948.tb00917.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038869286"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01213075", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046462495", 
          "https://doi.org/10.1007/bf01213075"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-04114-8_48", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050886995", 
          "https://doi.org/10.1007/978-3-319-04114-8_48"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/26.585919", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061137560"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/83.855427", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061240162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jrproc.1952.273898", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061313065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tit.1966.1053907", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061646234"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tit.1975.1055357", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061647592"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tit.1977.1055714", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061647931"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.imavis.2017.01.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083741803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/dcc.1993.253114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086330967"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/smbv.2001.988772", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093174690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/pcs.2012.6213291", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093222243"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccda.2010.5540865", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093241777"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccda.2010.5540865", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093241777"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/3dv.2016.32", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093365817"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2013.45", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093437397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2013.45", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093437397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/dcc.1996.488319", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093740157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ivs.2010.5548114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093834796"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ivs.2016.7535373", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094498345"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2005.56", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094805794"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icma.2010.5588008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095472953"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3109/9780203026656", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099238987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5244/c.25.51", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099341387"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1109715392", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-8348-9845-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109715392", 
          "https://doi.org/10.1007/978-3-8348-9845-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-8348-9845-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109715392", 
          "https://doi.org/10.1007/978-3-8348-9845-6"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02-08", 
    "datePublishedReg": "2019-02-08", 
    "description": "Modern day automotive features (e.g., in-vehicle augmented reality) require a depth of the environment as the input source. It is important that depth data can be transferred from one processing unit to another in a car. About 10 years ago, Stixel has been introduced as a mid-level representation of depth maps (disparities) which reduces the data volume thereof significantly. Since then, Stixel has been extensively researched and is nowadays a seriously considered solution for series production cars. Nevertheless, even after using a Stixel representation, the depth data can hardly fit into a low- or medium-bandwidth in-vehicle communication system, e.g., via a CAN bus. Hence, the cost-sensitive automotive industry is still seeking new solutions for the transmission of depth information using in-vehicle communication buses. In this paper, we present an efficient lossless compression scheme for Stixels as a potential solution to this problem. Our proposed algorithm removes both spatial and temporal redundancies in Stixels through a combination of predictive modeling and entropy coding. Evaluation shows that it outperforms general purpose compression schemes, e.g., zlib, by more than 60% in space savings. More importantly, we prove that using the proposed Stixel compression, depth information could be transmitted through a less expensive CAN bus, whereas a much more expensive FlexRay bus is needed otherwise. We believe that this finding has great relevance for the automotive industry.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00530-019-00605-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1284647", 
        "issn": [
          "0942-4962", 
          "1432-1882"
        ], 
        "name": "Multimedia Systems", 
        "type": "Periodical"
      }
    ], 
    "name": "Efficient lossless compression for depth information in traffic scenarios", 
    "pagination": "1-14", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c33cec049a11ea7a75c06d24b4192abca21eb33c8d04416a3ec6da174641748d"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00530-019-00605-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112024668"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00530-019-00605-z", 
      "https://app.dimensions.ai/details/publication/pub.1112024668"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000332_0000000332/records_121939_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00530-019-00605-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00530-019-00605-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00530-019-00605-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00530-019-00605-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00530-019-00605-z'


 

This table displays all metadata directly associated to this object as RDF triples.

179 TRIPLES      21 PREDICATES      59 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00530-019-00605-z schema:about anzsrc-for:08
2 anzsrc-for:0804
3 schema:author N6b10146de7f14bda944324d390e8af27
4 schema:citation sg:pub.10.1007/978-3-319-04114-8_48
5 sg:pub.10.1007/978-3-319-45886-1_2
6 sg:pub.10.1007/978-3-642-03798-6_6
7 sg:pub.10.1007/978-3-642-04667-4_14
8 sg:pub.10.1007/978-3-8348-9188-4
9 sg:pub.10.1007/978-3-8348-9845-6
10 sg:pub.10.1007/bf01213075
11 sg:pub.10.1007/s00530-008-0144-y
12 sg:pub.10.1007/s00530-008-0150-0
13 sg:pub.10.1007/s00530-012-0282-0
14 sg:pub.10.1007/s10707-015-0231-0
15 sg:pub.10.1023/a:1014554110407
16 https://app.dimensions.ai/details/publication/pub.1024672920
17 https://app.dimensions.ai/details/publication/pub.1109715392
18 https://doi.org/10.1002/j.1538-7305.1948.tb00917.x
19 https://doi.org/10.1016/j.imavis.2017.01.009
20 https://doi.org/10.1109/26.585919
21 https://doi.org/10.1109/3dv.2016.32
22 https://doi.org/10.1109/83.855427
23 https://doi.org/10.1109/cvpr.2005.56
24 https://doi.org/10.1109/cvpr.2013.45
25 https://doi.org/10.1109/dcc.1993.253114
26 https://doi.org/10.1109/dcc.1996.488319
27 https://doi.org/10.1109/iccda.2010.5540865
28 https://doi.org/10.1109/icma.2010.5588008
29 https://doi.org/10.1109/ivs.2010.5548114
30 https://doi.org/10.1109/ivs.2016.7535373
31 https://doi.org/10.1109/jrproc.1952.273898
32 https://doi.org/10.1109/pcs.2012.6213291
33 https://doi.org/10.1109/smbv.2001.988772
34 https://doi.org/10.1109/tit.1966.1053907
35 https://doi.org/10.1109/tit.1975.1055357
36 https://doi.org/10.1109/tit.1977.1055714
37 https://doi.org/10.3109/9780203026656
38 https://doi.org/10.5244/c.25.51
39 schema:datePublished 2019-02-08
40 schema:datePublishedReg 2019-02-08
41 schema:description Modern day automotive features (e.g., in-vehicle augmented reality) require a depth of the environment as the input source. It is important that depth data can be transferred from one processing unit to another in a car. About 10 years ago, Stixel has been introduced as a mid-level representation of depth maps (disparities) which reduces the data volume thereof significantly. Since then, Stixel has been extensively researched and is nowadays a seriously considered solution for series production cars. Nevertheless, even after using a Stixel representation, the depth data can hardly fit into a low- or medium-bandwidth in-vehicle communication system, e.g., via a CAN bus. Hence, the cost-sensitive automotive industry is still seeking new solutions for the transmission of depth information using in-vehicle communication buses. In this paper, we present an efficient lossless compression scheme for Stixels as a potential solution to this problem. Our proposed algorithm removes both spatial and temporal redundancies in Stixels through a combination of predictive modeling and entropy coding. Evaluation shows that it outperforms general purpose compression schemes, e.g., zlib, by more than 60% in space savings. More importantly, we prove that using the proposed Stixel compression, depth information could be transmitted through a less expensive CAN bus, whereas a much more expensive FlexRay bus is needed otherwise. We believe that this finding has great relevance for the automotive industry.
42 schema:genre research_article
43 schema:inLanguage en
44 schema:isAccessibleForFree false
45 schema:isPartOf sg:journal.1284647
46 schema:name Efficient lossless compression for depth information in traffic scenarios
47 schema:pagination 1-14
48 schema:productId N3bc7b867843c49d7ba0a676423ddf041
49 N4c05a38ced854ae4853ada29457753b7
50 Ncbd7c0e75b194bebb0ac4a8711f3fa0b
51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112024668
52 https://doi.org/10.1007/s00530-019-00605-z
53 schema:sdDatePublished 2019-04-11T09:03
54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
55 schema:sdPublisher Nb592516f96104429b85fa1e74b2ed011
56 schema:url https://link.springer.com/10.1007%2Fs00530-019-00605-z
57 sgo:license sg:explorer/license/
58 sgo:sdDataset articles
59 rdf:type schema:ScholarlyArticle
60 N3bc7b867843c49d7ba0a676423ddf041 schema:name readcube_id
61 schema:value c33cec049a11ea7a75c06d24b4192abca21eb33c8d04416a3ec6da174641748d
62 rdf:type schema:PropertyValue
63 N428681345a3a4b26b8f67ad2a5211df1 rdf:first N88fe11925f8b4351be0699d031edbe01
64 rdf:rest rdf:nil
65 N4c05a38ced854ae4853ada29457753b7 schema:name doi
66 schema:value 10.1007/s00530-019-00605-z
67 rdf:type schema:PropertyValue
68 N6b10146de7f14bda944324d390e8af27 rdf:first Naefbf9530fd443bbade57c336579fdbc
69 rdf:rest N428681345a3a4b26b8f67ad2a5211df1
70 N88fe11925f8b4351be0699d031edbe01 schema:affiliation https://www.grid.ac/institutes/grid.6936.a
71 schema:familyName Chakraborty
72 schema:givenName Samarjit
73 rdf:type schema:Person
74 Naefbf9530fd443bbade57c336579fdbc schema:affiliation https://www.grid.ac/institutes/grid.5433.1
75 schema:familyName Rao
76 schema:givenName Qing
77 rdf:type schema:Person
78 Nb592516f96104429b85fa1e74b2ed011 schema:name Springer Nature - SN SciGraph project
79 rdf:type schema:Organization
80 Ncbd7c0e75b194bebb0ac4a8711f3fa0b schema:name dimensions_id
81 schema:value pub.1112024668
82 rdf:type schema:PropertyValue
83 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
84 schema:name Information and Computing Sciences
85 rdf:type schema:DefinedTerm
86 anzsrc-for:0804 schema:inDefinedTermSet anzsrc-for:
87 schema:name Data Format
88 rdf:type schema:DefinedTerm
89 sg:journal.1284647 schema:issn 0942-4962
90 1432-1882
91 schema:name Multimedia Systems
92 rdf:type schema:Periodical
93 sg:pub.10.1007/978-3-319-04114-8_48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050886995
94 https://doi.org/10.1007/978-3-319-04114-8_48
95 rdf:type schema:CreativeWork
96 sg:pub.10.1007/978-3-319-45886-1_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019425063
97 https://doi.org/10.1007/978-3-319-45886-1_2
98 rdf:type schema:CreativeWork
99 sg:pub.10.1007/978-3-642-03798-6_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028871754
100 https://doi.org/10.1007/978-3-642-03798-6_6
101 rdf:type schema:CreativeWork
102 sg:pub.10.1007/978-3-642-04667-4_14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037474919
103 https://doi.org/10.1007/978-3-642-04667-4_14
104 rdf:type schema:CreativeWork
105 sg:pub.10.1007/978-3-8348-9188-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024672920
106 https://doi.org/10.1007/978-3-8348-9188-4
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/978-3-8348-9845-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109715392
109 https://doi.org/10.1007/978-3-8348-9845-6
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/bf01213075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046462495
112 https://doi.org/10.1007/bf01213075
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/s00530-008-0144-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1000001807
115 https://doi.org/10.1007/s00530-008-0144-y
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/s00530-008-0150-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033795381
118 https://doi.org/10.1007/s00530-008-0150-0
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/s00530-012-0282-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026103914
121 https://doi.org/10.1007/s00530-012-0282-0
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/s10707-015-0231-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032712436
124 https://doi.org/10.1007/s10707-015-0231-0
125 rdf:type schema:CreativeWork
126 sg:pub.10.1023/a:1014554110407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018291876
127 https://doi.org/10.1023/a:1014554110407
128 rdf:type schema:CreativeWork
129 https://app.dimensions.ai/details/publication/pub.1024672920 schema:CreativeWork
130 https://app.dimensions.ai/details/publication/pub.1109715392 schema:CreativeWork
131 https://doi.org/10.1002/j.1538-7305.1948.tb00917.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1038869286
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.imavis.2017.01.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083741803
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1109/26.585919 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061137560
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1109/3dv.2016.32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093365817
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1109/83.855427 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061240162
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1109/cvpr.2005.56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094805794
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1109/cvpr.2013.45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093437397
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1109/dcc.1993.253114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086330967
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1109/dcc.1996.488319 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093740157
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1109/iccda.2010.5540865 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093241777
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1109/icma.2010.5588008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095472953
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1109/ivs.2010.5548114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093834796
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1109/ivs.2016.7535373 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094498345
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1109/jrproc.1952.273898 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061313065
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1109/pcs.2012.6213291 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093222243
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1109/smbv.2001.988772 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093174690
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1109/tit.1966.1053907 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061646234
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1109/tit.1975.1055357 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061647592
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1109/tit.1977.1055714 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061647931
168 rdf:type schema:CreativeWork
169 https://doi.org/10.3109/9780203026656 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099238987
170 rdf:type schema:CreativeWork
171 https://doi.org/10.5244/c.25.51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099341387
172 rdf:type schema:CreativeWork
173 https://www.grid.ac/institutes/grid.5433.1 schema:alternateName Daimler (Germany)
174 schema:name Daimler AG, Research and Development, Benz Str., 71063, Sindelfingen, Germany
175 Technical University of Munich, Arcisstr. 21, 80333, Munich, Germany
176 rdf:type schema:Organization
177 https://www.grid.ac/institutes/grid.6936.a schema:alternateName Technical University Munich
178 schema:name Technical University of Munich, Arcisstr. 21, 80333, Munich, Germany
179 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...