HVS-based scalable video watermarking View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-01-30

AUTHORS

Mehran Deljavan Amiri, Ali Amiri, Majid Meghdadi

ABSTRACT

Scalable coding methods are widely considered as promising coding approaches for image/video transmission in heterogeneous environments. To copyright protection of scalable coded videos, scalable video watermarking was introduced which enables reconstructing various scales of watermark from watermarked videos. This paper proposes a novel human vision system-based, spread spectrum method to scalable video watermarking. The host video is decomposed using newly proposed spatio-temporal motion-compensated 3D wavelet decomposition, called k(t+2D) DWT decomposition, to frequency sub-bands. A scalable decomposition of the watermark is inserted into the entire frequency sub-bands of decomposed video. At each frequency sub-band, the watermark data are inserted into the selected coefficients of the sub-band frames in a way that the watermark embedding visual artifact occurs in the highly textured, highly contrasted, and very dark/bright areas of the video frames. The experimental results show that the watermarked test videos are highly transparent and robust against scalable video coding even at very low decoding bit-rates and some other video processing attacks. The proposed approach can guarantee copyright protection for scalable coded videos, especially over heterogeneous networks. More... »

PAGES

1-19

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00530-019-00604-0

DOI

http://dx.doi.org/10.1007/s00530-019-00604-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111771661


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Zanjan", 
          "id": "https://www.grid.ac/institutes/grid.412673.5", 
          "name": [
            "Computer Engineering Department, University of Zanjan, Zanjan, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Deljavan Amiri", 
        "givenName": "Mehran", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Zanjan", 
          "id": "https://www.grid.ac/institutes/grid.412673.5", 
          "name": [
            "Computer Engineering Department, University of Zanjan, Zanjan, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Amiri", 
        "givenName": "Ali", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Zanjan", 
          "id": "https://www.grid.ac/institutes/grid.412673.5", 
          "name": [
            "Computer Engineering Department, University of Zanjan, Zanjan, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Meghdadi", 
        "givenName": "Majid", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11554-011-0218-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000328229", 
          "https://doi.org/10.1007/s11554-011-0218-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-0571-5_8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000361994", 
          "https://doi.org/10.1007/978-1-4612-0571-5_8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-0571-5_8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000361994", 
          "https://doi.org/10.1007/978-1-4612-0571-5_8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-15702-8_64", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006684970", 
          "https://doi.org/10.1007/978-3-642-15702-8_64"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11042-015-3028-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010427536", 
          "https://doi.org/10.1007/s11042-015-3028-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-88458-3_6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012547405", 
          "https://doi.org/10.1007/978-3-540-88458-3_6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-88458-3_6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012547405", 
          "https://doi.org/10.1007/978-3-540-88458-3_6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jvcir.2015.12.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015089283"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.435442", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017549872"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tip.2016.2599785", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018629944"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00530-004-0133-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023545121", 
          "https://doi.org/10.1007/s00530-004-0133-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-18405-5_13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024513980", 
          "https://doi.org/10.1007/978-3-642-18405-5_13"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1179/1743131x11y.0000000026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026542633"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-45496-9_25", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038988521", 
          "https://doi.org/10.1007/3-540-45496-9_25"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11042-015-2689-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040321871", 
          "https://doi.org/10.1007/s11042-015-2689-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-28693-3_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046335450", 
          "https://doi.org/10.1007/978-3-642-28693-3_1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11042-016-4226-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046671676", 
          "https://doi.org/10.1007/s11042-016-4226-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11042-016-4226-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046671676", 
          "https://doi.org/10.1007/s11042-016-4226-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2012/973418", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048941203"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/iet-ifs.2010.0059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056828527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/iet-ipr.2014.0965", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056829404"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/ip-vis:20040734", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056860942"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/18.57199", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061100303"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/83.136601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061239016"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/83.918570", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061240317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcsvt.2004.833165", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061574612"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcsvt.2007.905532", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061575094"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcsvt.2016.2607299", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061576889"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tifs.2006.890306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061629463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tifs.2008.923825", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061629598"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tip.2003.819861", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061640964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmm.2016.2589208", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061698718"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jvcir.2017.02.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083874752"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/3083165.3083174", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090380361"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/dicta.2016.7797095", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093181108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iceiec.2016.7589733", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093368734"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ncvpripg.2015.7490041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093402819"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icce-tw.2016.7520710", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093457137"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/itcc.2000.844194", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093598733"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iemcon.2015.7344459", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094455400"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icebeg.2011.5881271", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095039871"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icsipa.2009.5478604", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095367143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icce.2015.7066337", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095742971"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-01-30", 
    "datePublishedReg": "2019-01-30", 
    "description": "Scalable coding methods are widely considered as promising coding approaches for image/video transmission in heterogeneous environments. To copyright protection of scalable coded videos, scalable video watermarking was introduced which enables reconstructing various scales of watermark from watermarked videos. This paper proposes a novel human vision system-based, spread spectrum method to scalable video watermarking. The host video is decomposed using newly proposed spatio-temporal motion-compensated 3D wavelet decomposition, called k(t+2D) DWT decomposition, to frequency sub-bands. A scalable decomposition of the watermark is inserted into the entire frequency sub-bands of decomposed video. At each frequency sub-band, the watermark data are inserted into the selected coefficients of the sub-band frames in a way that the watermark embedding visual artifact occurs in the highly textured, highly contrasted, and very dark/bright areas of the video frames. The experimental results show that the watermarked test videos are highly transparent and robust against scalable video coding even at very low decoding bit-rates and some other video processing attacks. The proposed approach can guarantee copyright protection for scalable coded videos, especially over heterogeneous networks.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00530-019-00604-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1284647", 
        "issn": [
          "0942-4962", 
          "1432-1882"
        ], 
        "name": "Multimedia Systems", 
        "type": "Periodical"
      }
    ], 
    "name": "HVS-based scalable video watermarking", 
    "pagination": "1-19", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "33ea6d26ade71b761a91e4ace1e8b0cfc397c4f0595f6a6296f4bcb4169a9482"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00530-019-00604-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111771661"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00530-019-00604-0", 
      "https://app.dimensions.ai/details/publication/pub.1111771661"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000327_0000000327/records_114999_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00530-019-00604-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00530-019-00604-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00530-019-00604-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00530-019-00604-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00530-019-00604-0'


 

This table displays all metadata directly associated to this object as RDF triples.

197 TRIPLES      21 PREDICATES      64 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00530-019-00604-0 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N4192e0c8a51843749fa1957fb920fbb4
4 schema:citation sg:pub.10.1007/3-540-45496-9_25
5 sg:pub.10.1007/978-1-4612-0571-5_8
6 sg:pub.10.1007/978-3-540-88458-3_6
7 sg:pub.10.1007/978-3-642-15702-8_64
8 sg:pub.10.1007/978-3-642-18405-5_13
9 sg:pub.10.1007/978-3-642-28693-3_1
10 sg:pub.10.1007/s00530-004-0133-8
11 sg:pub.10.1007/s11042-015-2689-z
12 sg:pub.10.1007/s11042-015-3028-0
13 sg:pub.10.1007/s11042-016-4226-0
14 sg:pub.10.1007/s11554-011-0218-5
15 https://doi.org/10.1016/j.jvcir.2015.12.007
16 https://doi.org/10.1016/j.jvcir.2017.02.013
17 https://doi.org/10.1049/iet-ifs.2010.0059
18 https://doi.org/10.1049/iet-ipr.2014.0965
19 https://doi.org/10.1049/ip-vis:20040734
20 https://doi.org/10.1109/18.57199
21 https://doi.org/10.1109/83.136601
22 https://doi.org/10.1109/83.918570
23 https://doi.org/10.1109/dicta.2016.7797095
24 https://doi.org/10.1109/icce-tw.2016.7520710
25 https://doi.org/10.1109/icce.2015.7066337
26 https://doi.org/10.1109/icebeg.2011.5881271
27 https://doi.org/10.1109/iceiec.2016.7589733
28 https://doi.org/10.1109/icsipa.2009.5478604
29 https://doi.org/10.1109/iemcon.2015.7344459
30 https://doi.org/10.1109/itcc.2000.844194
31 https://doi.org/10.1109/ncvpripg.2015.7490041
32 https://doi.org/10.1109/tcsvt.2004.833165
33 https://doi.org/10.1109/tcsvt.2007.905532
34 https://doi.org/10.1109/tcsvt.2016.2607299
35 https://doi.org/10.1109/tifs.2006.890306
36 https://doi.org/10.1109/tifs.2008.923825
37 https://doi.org/10.1109/tip.2003.819861
38 https://doi.org/10.1109/tip.2016.2599785
39 https://doi.org/10.1109/tmm.2016.2589208
40 https://doi.org/10.1117/12.435442
41 https://doi.org/10.1145/3083165.3083174
42 https://doi.org/10.1155/2012/973418
43 https://doi.org/10.1179/1743131x11y.0000000026
44 schema:datePublished 2019-01-30
45 schema:datePublishedReg 2019-01-30
46 schema:description Scalable coding methods are widely considered as promising coding approaches for image/video transmission in heterogeneous environments. To copyright protection of scalable coded videos, scalable video watermarking was introduced which enables reconstructing various scales of watermark from watermarked videos. This paper proposes a novel human vision system-based, spread spectrum method to scalable video watermarking. The host video is decomposed using newly proposed spatio-temporal motion-compensated 3D wavelet decomposition, called k(t+2D) DWT decomposition, to frequency sub-bands. A scalable decomposition of the watermark is inserted into the entire frequency sub-bands of decomposed video. At each frequency sub-band, the watermark data are inserted into the selected coefficients of the sub-band frames in a way that the watermark embedding visual artifact occurs in the highly textured, highly contrasted, and very dark/bright areas of the video frames. The experimental results show that the watermarked test videos are highly transparent and robust against scalable video coding even at very low decoding bit-rates and some other video processing attacks. The proposed approach can guarantee copyright protection for scalable coded videos, especially over heterogeneous networks.
47 schema:genre research_article
48 schema:inLanguage en
49 schema:isAccessibleForFree false
50 schema:isPartOf sg:journal.1284647
51 schema:name HVS-based scalable video watermarking
52 schema:pagination 1-19
53 schema:productId N9103d2a684c14c868fd5e7cc471345c7
54 Nbfd5c59e4bcf478fae4b1e89494edadc
55 Ne72939670b8f43afa14fa814a4c272ee
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111771661
57 https://doi.org/10.1007/s00530-019-00604-0
58 schema:sdDatePublished 2019-04-11T09:00
59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
60 schema:sdPublisher Neb0382cd92594946891586b94258855a
61 schema:url https://link.springer.com/10.1007%2Fs00530-019-00604-0
62 sgo:license sg:explorer/license/
63 sgo:sdDataset articles
64 rdf:type schema:ScholarlyArticle
65 N196122f468c9453aa7d0c59a7403aaac rdf:first N1a27f6b30ba5485895e89410bbccfed3
66 rdf:rest rdf:nil
67 N1a27f6b30ba5485895e89410bbccfed3 schema:affiliation https://www.grid.ac/institutes/grid.412673.5
68 schema:familyName Meghdadi
69 schema:givenName Majid
70 rdf:type schema:Person
71 N4192e0c8a51843749fa1957fb920fbb4 rdf:first N84cfe777d7604fa3b85b03f9f701dd53
72 rdf:rest N8c9a00265c3845739ea14986700e4a68
73 N84cfe777d7604fa3b85b03f9f701dd53 schema:affiliation https://www.grid.ac/institutes/grid.412673.5
74 schema:familyName Deljavan Amiri
75 schema:givenName Mehran
76 rdf:type schema:Person
77 N8c9a00265c3845739ea14986700e4a68 rdf:first N91a7473d4df74967a46e17a6cc901aa2
78 rdf:rest N196122f468c9453aa7d0c59a7403aaac
79 N9103d2a684c14c868fd5e7cc471345c7 schema:name doi
80 schema:value 10.1007/s00530-019-00604-0
81 rdf:type schema:PropertyValue
82 N91a7473d4df74967a46e17a6cc901aa2 schema:affiliation https://www.grid.ac/institutes/grid.412673.5
83 schema:familyName Amiri
84 schema:givenName Ali
85 rdf:type schema:Person
86 Nbfd5c59e4bcf478fae4b1e89494edadc schema:name readcube_id
87 schema:value 33ea6d26ade71b761a91e4ace1e8b0cfc397c4f0595f6a6296f4bcb4169a9482
88 rdf:type schema:PropertyValue
89 Ne72939670b8f43afa14fa814a4c272ee schema:name dimensions_id
90 schema:value pub.1111771661
91 rdf:type schema:PropertyValue
92 Neb0382cd92594946891586b94258855a schema:name Springer Nature - SN SciGraph project
93 rdf:type schema:Organization
94 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
95 schema:name Information and Computing Sciences
96 rdf:type schema:DefinedTerm
97 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
98 schema:name Artificial Intelligence and Image Processing
99 rdf:type schema:DefinedTerm
100 sg:journal.1284647 schema:issn 0942-4962
101 1432-1882
102 schema:name Multimedia Systems
103 rdf:type schema:Periodical
104 sg:pub.10.1007/3-540-45496-9_25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038988521
105 https://doi.org/10.1007/3-540-45496-9_25
106 rdf:type schema:CreativeWork
107 sg:pub.10.1007/978-1-4612-0571-5_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000361994
108 https://doi.org/10.1007/978-1-4612-0571-5_8
109 rdf:type schema:CreativeWork
110 sg:pub.10.1007/978-3-540-88458-3_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012547405
111 https://doi.org/10.1007/978-3-540-88458-3_6
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/978-3-642-15702-8_64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006684970
114 https://doi.org/10.1007/978-3-642-15702-8_64
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/978-3-642-18405-5_13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024513980
117 https://doi.org/10.1007/978-3-642-18405-5_13
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/978-3-642-28693-3_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046335450
120 https://doi.org/10.1007/978-3-642-28693-3_1
121 rdf:type schema:CreativeWork
122 sg:pub.10.1007/s00530-004-0133-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023545121
123 https://doi.org/10.1007/s00530-004-0133-8
124 rdf:type schema:CreativeWork
125 sg:pub.10.1007/s11042-015-2689-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1040321871
126 https://doi.org/10.1007/s11042-015-2689-z
127 rdf:type schema:CreativeWork
128 sg:pub.10.1007/s11042-015-3028-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010427536
129 https://doi.org/10.1007/s11042-015-3028-0
130 rdf:type schema:CreativeWork
131 sg:pub.10.1007/s11042-016-4226-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046671676
132 https://doi.org/10.1007/s11042-016-4226-0
133 rdf:type schema:CreativeWork
134 sg:pub.10.1007/s11554-011-0218-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000328229
135 https://doi.org/10.1007/s11554-011-0218-5
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.jvcir.2015.12.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015089283
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.jvcir.2017.02.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083874752
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1049/iet-ifs.2010.0059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056828527
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1049/iet-ipr.2014.0965 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056829404
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1049/ip-vis:20040734 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056860942
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1109/18.57199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061100303
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1109/83.136601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061239016
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1109/83.918570 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061240317
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1109/dicta.2016.7797095 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093181108
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1109/icce-tw.2016.7520710 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093457137
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1109/icce.2015.7066337 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095742971
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1109/icebeg.2011.5881271 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095039871
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1109/iceiec.2016.7589733 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093368734
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1109/icsipa.2009.5478604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095367143
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1109/iemcon.2015.7344459 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094455400
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1109/itcc.2000.844194 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093598733
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1109/ncvpripg.2015.7490041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093402819
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1109/tcsvt.2004.833165 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061574612
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1109/tcsvt.2007.905532 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061575094
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1109/tcsvt.2016.2607299 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061576889
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1109/tifs.2006.890306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061629463
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1109/tifs.2008.923825 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061629598
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1109/tip.2003.819861 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061640964
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1109/tip.2016.2599785 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018629944
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1109/tmm.2016.2589208 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061698718
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1117/12.435442 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017549872
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1145/3083165.3083174 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090380361
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1155/2012/973418 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048941203
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1179/1743131x11y.0000000026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026542633
194 rdf:type schema:CreativeWork
195 https://www.grid.ac/institutes/grid.412673.5 schema:alternateName University of Zanjan
196 schema:name Computer Engineering Department, University of Zanjan, Zanjan, Iran
197 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...