Exploring overall opinions for document level sentiment classification with structural SVM View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02

AUTHORS

Xiaojia Pu, Gangshan Wu, Chunfeng Yuan

ABSTRACT

As a fundamental task of sentiment analysis, document level sentiment classification aims to predict user’s overall sentiment (e.g., positive or negative) towards the target in a document. The document usually consists of various opinion sentences towards different aspects with different sentiments. Therefore, the overall opinion towards the whole target should play a more important role in document sentiment prediction. However, most existing methods for the task treat all sentences of the document equally. Thus, they are easy to encounter difficulty when the sentiments of most aspect opinion sentences are not coherent with the overall sentiment. To address this, we propose a novel method for document sentiment classification which adequately explores the effect of overall opinion sentences. In our method, firstly, multiple features are exploited to recognize candidate overall opinion sentences, and then a structural SVM is utilized to encode the overall opinion sentences for document sentiment classification. Experiments on several public available datasets including product reviews and movie reviews show the effectiveness of our method. More... »

PAGES

21-33

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00530-017-0550-0

DOI

http://dx.doi.org/10.1007/s00530-017-0550-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1084933529


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Nanjing University", 
          "id": "https://www.grid.ac/institutes/grid.41156.37", 
          "name": [
            "State Key Laboratory for Novel Software Technology, Department of Computer Science and Technology, Nanjing University, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pu", 
        "givenName": "Xiaojia", 
        "id": "sg:person.012124511736.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012124511736.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanjing University", 
          "id": "https://www.grid.ac/institutes/grid.41156.37", 
          "name": [
            "State Key Laboratory for Novel Software Technology, Department of Computer Science and Technology, Nanjing University, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wu", 
        "givenName": "Gangshan", 
        "id": "sg:person.016276375375.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016276375375.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanjing University", 
          "id": "https://www.grid.ac/institutes/grid.41156.37", 
          "name": [
            "State Key Laboratory for Novel Software Technology, Department of Computer Science and Technology, Nanjing University, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yuan", 
        "givenName": "Chunfeng", 
        "id": "sg:person.011710401526.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011710401526.67"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1145/1014052.1014073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001058137"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2037676.2037687", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004133405"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2507157.2507163", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006536353"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-20161-5_37", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008254287", 
          "https://doi.org/10.1007/978-3-642-20161-5_37"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-20161-5_37", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008254287", 
          "https://doi.org/10.1007/978-3-642-20161-5_37"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2396761.2396863", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008906934"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1553374.1553523", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014502779"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2733373.2807423", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018409465"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1341531.1341561", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023082477"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1645953.1646003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030846598"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1557019.1557148", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034076190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/neco.1997.9.8.1735", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038140272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/coli_a_00049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040708172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1367497.1367514", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041626428"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10994-009-5108-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043170105", 
          "https://doi.org/10.1007/s10994-009-5108-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10994-009-5108-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043170105", 
          "https://doi.org/10.1007/s10994-009-5108-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2393347.2393358", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051227941"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmm.2012.2188782", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061697955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmm.2015.2491019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061698564"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1561/1500000011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068001277"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2200/s00416ed1v01y201204hlt016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069288298"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1.9781611972818.43", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1088800540"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ijcnn.2016.7727384", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094179488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18653/v1/d15-1167", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099106145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3115/v1/p14-1023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099110613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3115/v1/p14-1023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099110613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3115/v1/p14-1146", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099110732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3115/v1/p14-1146", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099110732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3115/v1/p15-1107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099115117"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3115/v1/p15-1107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099115117"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3115/1118693.1118704", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099201585"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3115/1118693.1118704", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099201585"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3115/1218955.1218990", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099221218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3115/1218955.1218990", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099221218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3115/1073083.1073153", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099239642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3115/1073083.1073153", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099239642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1613/jair.4272", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105689935"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02", 
    "datePublishedReg": "2019-02-01", 
    "description": "As a fundamental task of sentiment analysis, document level sentiment classification aims to predict user\u2019s overall sentiment (e.g., positive or negative) towards the target in a document. The document usually consists of various opinion sentences towards different aspects with different sentiments. Therefore, the overall opinion towards the whole target should play a more important role in document sentiment prediction. However, most existing methods for the task treat all sentences of the document equally. Thus, they are easy to encounter difficulty when the sentiments of most aspect opinion sentences are not coherent with the overall sentiment. To address this, we propose a novel method for document sentiment classification which adequately explores the effect of overall opinion sentences. In our method, firstly, multiple features are exploited to recognize candidate overall opinion sentences, and then a structural SVM is utilized to encode the overall opinion sentences for document sentiment classification. Experiments on several public available datasets including product reviews and movie reviews show the effectiveness of our method.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00530-017-0550-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7180480", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7195782", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1284647", 
        "issn": [
          "0942-4962", 
          "1432-1882"
        ], 
        "name": "Multimedia Systems", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "25"
      }
    ], 
    "name": "Exploring overall opinions for document level sentiment classification with structural SVM", 
    "pagination": "21-33", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a255b24c153ef851c196a9f8bf1581652eb7b6df27275c1253d857b1d7ec04ea"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00530-017-0550-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1084933529"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00530-017-0550-0", 
      "https://app.dimensions.ai/details/publication/pub.1084933529"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000346_0000000346/records_99821_00000004.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00530-017-0550-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00530-017-0550-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00530-017-0550-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00530-017-0550-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00530-017-0550-0'


 

This table displays all metadata directly associated to this object as RDF triples.

168 TRIPLES      21 PREDICATES      56 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00530-017-0550-0 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Necc285511ace4cdc87d0123a276cc97c
4 schema:citation sg:pub.10.1007/978-3-642-20161-5_37
5 sg:pub.10.1007/s10994-009-5108-8
6 https://doi.org/10.1109/ijcnn.2016.7727384
7 https://doi.org/10.1109/tmm.2012.2188782
8 https://doi.org/10.1109/tmm.2015.2491019
9 https://doi.org/10.1137/1.9781611972818.43
10 https://doi.org/10.1145/1014052.1014073
11 https://doi.org/10.1145/1341531.1341561
12 https://doi.org/10.1145/1367497.1367514
13 https://doi.org/10.1145/1553374.1553523
14 https://doi.org/10.1145/1557019.1557148
15 https://doi.org/10.1145/1645953.1646003
16 https://doi.org/10.1145/2037676.2037687
17 https://doi.org/10.1145/2393347.2393358
18 https://doi.org/10.1145/2396761.2396863
19 https://doi.org/10.1145/2507157.2507163
20 https://doi.org/10.1145/2733373.2807423
21 https://doi.org/10.1162/coli_a_00049
22 https://doi.org/10.1162/neco.1997.9.8.1735
23 https://doi.org/10.1561/1500000011
24 https://doi.org/10.1613/jair.4272
25 https://doi.org/10.18653/v1/d15-1167
26 https://doi.org/10.2200/s00416ed1v01y201204hlt016
27 https://doi.org/10.3115/1073083.1073153
28 https://doi.org/10.3115/1118693.1118704
29 https://doi.org/10.3115/1218955.1218990
30 https://doi.org/10.3115/v1/p14-1023
31 https://doi.org/10.3115/v1/p14-1146
32 https://doi.org/10.3115/v1/p15-1107
33 schema:datePublished 2019-02
34 schema:datePublishedReg 2019-02-01
35 schema:description As a fundamental task of sentiment analysis, document level sentiment classification aims to predict user’s overall sentiment (e.g., positive or negative) towards the target in a document. The document usually consists of various opinion sentences towards different aspects with different sentiments. Therefore, the overall opinion towards the whole target should play a more important role in document sentiment prediction. However, most existing methods for the task treat all sentences of the document equally. Thus, they are easy to encounter difficulty when the sentiments of most aspect opinion sentences are not coherent with the overall sentiment. To address this, we propose a novel method for document sentiment classification which adequately explores the effect of overall opinion sentences. In our method, firstly, multiple features are exploited to recognize candidate overall opinion sentences, and then a structural SVM is utilized to encode the overall opinion sentences for document sentiment classification. Experiments on several public available datasets including product reviews and movie reviews show the effectiveness of our method.
36 schema:genre research_article
37 schema:inLanguage en
38 schema:isAccessibleForFree false
39 schema:isPartOf N30d763141012440ba50fa93e083fbfdd
40 N38c0e860490242acb0162396032021bd
41 sg:journal.1284647
42 schema:name Exploring overall opinions for document level sentiment classification with structural SVM
43 schema:pagination 21-33
44 schema:productId N6879dc8176cc4f4eab03ebba00857ef2
45 Nb9cd39afc7e5465480a479e3ac31d6ea
46 Nf3898296099c482db2c6d9d2ae59ebd6
47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084933529
48 https://doi.org/10.1007/s00530-017-0550-0
49 schema:sdDatePublished 2019-04-11T09:36
50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
51 schema:sdPublisher N1e77ee4c47d747d59a816b36e6591f20
52 schema:url https://link.springer.com/10.1007%2Fs00530-017-0550-0
53 sgo:license sg:explorer/license/
54 sgo:sdDataset articles
55 rdf:type schema:ScholarlyArticle
56 N1e77ee4c47d747d59a816b36e6591f20 schema:name Springer Nature - SN SciGraph project
57 rdf:type schema:Organization
58 N30d763141012440ba50fa93e083fbfdd schema:volumeNumber 25
59 rdf:type schema:PublicationVolume
60 N38c0e860490242acb0162396032021bd schema:issueNumber 1
61 rdf:type schema:PublicationIssue
62 N6879dc8176cc4f4eab03ebba00857ef2 schema:name dimensions_id
63 schema:value pub.1084933529
64 rdf:type schema:PropertyValue
65 Nb9cd39afc7e5465480a479e3ac31d6ea schema:name doi
66 schema:value 10.1007/s00530-017-0550-0
67 rdf:type schema:PropertyValue
68 Nc346d6c8f8b0406fb2b02c7d53990b58 rdf:first sg:person.016276375375.60
69 rdf:rest Nd1d44141fd2f4cafba2c80a38e974dee
70 Nd1d44141fd2f4cafba2c80a38e974dee rdf:first sg:person.011710401526.67
71 rdf:rest rdf:nil
72 Necc285511ace4cdc87d0123a276cc97c rdf:first sg:person.012124511736.88
73 rdf:rest Nc346d6c8f8b0406fb2b02c7d53990b58
74 Nf3898296099c482db2c6d9d2ae59ebd6 schema:name readcube_id
75 schema:value a255b24c153ef851c196a9f8bf1581652eb7b6df27275c1253d857b1d7ec04ea
76 rdf:type schema:PropertyValue
77 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
78 schema:name Information and Computing Sciences
79 rdf:type schema:DefinedTerm
80 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
81 schema:name Artificial Intelligence and Image Processing
82 rdf:type schema:DefinedTerm
83 sg:grant.7180480 http://pending.schema.org/fundedItem sg:pub.10.1007/s00530-017-0550-0
84 rdf:type schema:MonetaryGrant
85 sg:grant.7195782 http://pending.schema.org/fundedItem sg:pub.10.1007/s00530-017-0550-0
86 rdf:type schema:MonetaryGrant
87 sg:journal.1284647 schema:issn 0942-4962
88 1432-1882
89 schema:name Multimedia Systems
90 rdf:type schema:Periodical
91 sg:person.011710401526.67 schema:affiliation https://www.grid.ac/institutes/grid.41156.37
92 schema:familyName Yuan
93 schema:givenName Chunfeng
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011710401526.67
95 rdf:type schema:Person
96 sg:person.012124511736.88 schema:affiliation https://www.grid.ac/institutes/grid.41156.37
97 schema:familyName Pu
98 schema:givenName Xiaojia
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012124511736.88
100 rdf:type schema:Person
101 sg:person.016276375375.60 schema:affiliation https://www.grid.ac/institutes/grid.41156.37
102 schema:familyName Wu
103 schema:givenName Gangshan
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016276375375.60
105 rdf:type schema:Person
106 sg:pub.10.1007/978-3-642-20161-5_37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008254287
107 https://doi.org/10.1007/978-3-642-20161-5_37
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/s10994-009-5108-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043170105
110 https://doi.org/10.1007/s10994-009-5108-8
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1109/ijcnn.2016.7727384 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094179488
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1109/tmm.2012.2188782 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061697955
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1109/tmm.2015.2491019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061698564
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1137/1.9781611972818.43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1088800540
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1145/1014052.1014073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001058137
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1145/1341531.1341561 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023082477
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1145/1367497.1367514 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041626428
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1145/1553374.1553523 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014502779
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1145/1557019.1557148 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034076190
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1145/1645953.1646003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030846598
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1145/2037676.2037687 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004133405
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1145/2393347.2393358 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051227941
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1145/2396761.2396863 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008906934
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1145/2507157.2507163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006536353
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1145/2733373.2807423 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018409465
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1162/coli_a_00049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040708172
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1162/neco.1997.9.8.1735 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038140272
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1561/1500000011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068001277
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1613/jair.4272 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105689935
149 rdf:type schema:CreativeWork
150 https://doi.org/10.18653/v1/d15-1167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099106145
151 rdf:type schema:CreativeWork
152 https://doi.org/10.2200/s00416ed1v01y201204hlt016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069288298
153 rdf:type schema:CreativeWork
154 https://doi.org/10.3115/1073083.1073153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099239642
155 rdf:type schema:CreativeWork
156 https://doi.org/10.3115/1118693.1118704 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099201585
157 rdf:type schema:CreativeWork
158 https://doi.org/10.3115/1218955.1218990 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099221218
159 rdf:type schema:CreativeWork
160 https://doi.org/10.3115/v1/p14-1023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099110613
161 rdf:type schema:CreativeWork
162 https://doi.org/10.3115/v1/p14-1146 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099110732
163 rdf:type schema:CreativeWork
164 https://doi.org/10.3115/v1/p15-1107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099115117
165 rdf:type schema:CreativeWork
166 https://www.grid.ac/institutes/grid.41156.37 schema:alternateName Nanjing University
167 schema:name State Key Laboratory for Novel Software Technology, Department of Computer Science and Technology, Nanjing University, Nanjing, China
168 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...