Restricted affine motion compensation and estimation in video coding with particle filtering and importance sampling: a multi-resolution approach View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-03-25

AUTHORS

Mithilesh Kumar Jha, Ravi Chaudhary, Sumantra Dutta Roy, Mona Mathur, Brejesh Lall

ABSTRACT

In this paper, we propose a multi-resolution affine block-based tracker for motion estimation and compensation, compatible with existing video coding standards such as H.264 and HEVC. We propose three modifications to traditional motion compensation techniques in video coding standards such as H.264 and HEVC. First, we replace traditional search methods with an efficient particle filtering-based method, which incorporates information from both spatial and temporal continuity. Second, we use a higher order linear model in place of the traditional translation motion model in these standards to efficiently represent complex motions such as rotation and zoom. Third, we propose a multi-resolution framework that enables efficient parameter estimation. Results of extensive experimentation show reduced residual energy and better Peak Signal-to-Noise Ratio (PSNR, hereafter) as compared to H.264/HEVC for instance, especially in regions of complex motion such as zooming and rotation. More... »

PAGES

271-284

References to SciGraph publications

  • 1998-08. CONDENSATION—Conditional Density Propagation for Visual Tracking in INTERNATIONAL JOURNAL OF COMPUTER VISION
  • 1994-02. Computing occluding and transparent motions in INTERNATIONAL JOURNAL OF COMPUTER VISION
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00530-017-0543-z

    DOI

    http://dx.doi.org/10.1007/s00530-017-0543-z

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1084022568


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Electronic Engineering, I.I.T. Delhi, Hauz Khas, 110 016, New Delhi, India", 
              "id": "http://www.grid.ac/institutes/grid.417967.a", 
              "name": [
                "Department of Electronic Engineering, I.I.T. Delhi, Hauz Khas, 110 016, New Delhi, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jha", 
            "givenName": "Mithilesh Kumar", 
            "id": "sg:person.013745772671.37", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013745772671.37"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Electronic Engineering, I.I.T. Delhi, Hauz Khas, 110 016, New Delhi, India", 
              "id": "http://www.grid.ac/institutes/grid.417967.a", 
              "name": [
                "Department of Electronic Engineering, I.I.T. Delhi, Hauz Khas, 110 016, New Delhi, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chaudhary", 
            "givenName": "Ravi", 
            "id": "sg:person.014337221705.05", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014337221705.05"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Electronic Engineering, I.I.T. Delhi, Hauz Khas, 110 016, New Delhi, India", 
              "id": "http://www.grid.ac/institutes/grid.417967.a", 
              "name": [
                "Department of Electronic Engineering, I.I.T. Delhi, Hauz Khas, 110 016, New Delhi, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Roy", 
            "givenName": "Sumantra Dutta", 
            "id": "sg:person.0640201004.42", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640201004.42"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Electronic Engineering, I.I.T. Delhi, Hauz Khas, 110 016, New Delhi, India", 
              "id": "http://www.grid.ac/institutes/grid.417967.a", 
              "name": [
                "Department of Electronic Engineering, I.I.T. Delhi, Hauz Khas, 110 016, New Delhi, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mathur", 
            "givenName": "Mona", 
            "id": "sg:person.015134602305.12", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015134602305.12"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Electronic Engineering, I.I.T. Delhi, Hauz Khas, 110 016, New Delhi, India", 
              "id": "http://www.grid.ac/institutes/grid.417967.a", 
              "name": [
                "Department of Electronic Engineering, I.I.T. Delhi, Hauz Khas, 110 016, New Delhi, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lall", 
            "givenName": "Brejesh", 
            "id": "sg:person.016656542563.01", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016656542563.01"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1023/a:1008078328650", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012498237", 
              "https://doi.org/10.1023/a:1008078328650"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01420982", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018404989", 
              "https://doi.org/10.1007/bf01420982"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-03-25", 
        "datePublishedReg": "2017-03-25", 
        "description": "In this paper, we propose a multi-resolution affine block-based tracker for motion estimation and compensation, compatible with existing video coding standards such as H.264 and HEVC. We propose three modifications to traditional motion compensation techniques in video coding standards such as H.264 and HEVC. First, we replace traditional search methods with an efficient particle filtering-based method, which incorporates information from both spatial and temporal continuity. Second, we use a higher order linear model in place of the traditional translation motion model in these standards to efficiently represent complex motions such as rotation and zoom. Third, we propose a multi-resolution framework that enables efficient parameter estimation. Results of extensive experimentation show reduced residual energy and better Peak Signal-to-Noise Ratio (PSNR, hereafter) as compared to H.264/HEVC for instance, especially in regions of complex motion such as zooming and rotation.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00530-017-0543-z", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1358858", 
            "issn": [
              "0942-4962", 
              "1432-1882"
            ], 
            "name": "Multimedia Systems", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "24"
          }
        ], 
        "keywords": [
          "video coding standards", 
          "coding standards", 
          "particle filtering-based method", 
          "traditional search methods", 
          "affine motion compensation", 
          "high order linear model", 
          "multi-resolution framework", 
          "order linear model", 
          "multi-resolution approach", 
          "translation motion model", 
          "motion compensation technique", 
          "complex motion", 
          "better peak signal", 
          "filtering-based method", 
          "motion estimation", 
          "residual energy", 
          "compensation technique", 
          "peak signal", 
          "motion compensation", 
          "HEVC", 
          "experimentation show", 
          "search method", 
          "particle filtering", 
          "motion model", 
          "temporal continuity", 
          "parameter estimation", 
          "noise ratio", 
          "efficient parameter estimation", 
          "motion", 
          "estimation", 
          "video", 
          "compensation", 
          "zooming", 
          "importance sampling", 
          "tracker", 
          "zoom", 
          "filtering", 
          "framework", 
          "method", 
          "standards", 
          "energy", 
          "rotation", 
          "information", 
          "instances", 
          "model", 
          "signals", 
          "linear model", 
          "technique", 
          "ratio", 
          "modification", 
          "results", 
          "show", 
          "approach", 
          "continuity", 
          "region", 
          "sampling", 
          "place", 
          "paper"
        ], 
        "name": "Restricted affine motion compensation and estimation in video coding with particle filtering and importance sampling: a multi-resolution approach", 
        "pagination": "271-284", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1084022568"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00530-017-0543-z"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00530-017-0543-z", 
          "https://app.dimensions.ai/details/publication/pub.1084022568"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:36", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_747.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00530-017-0543-z"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00530-017-0543-z'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00530-017-0543-z'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00530-017-0543-z'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00530-017-0543-z'


     

    This table displays all metadata directly associated to this object as RDF triples.

    151 TRIPLES      21 PREDICATES      84 URIs      74 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00530-017-0543-z schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N844c4781cbfb474dabeaa33571ef91a0
    4 schema:citation sg:pub.10.1007/bf01420982
    5 sg:pub.10.1023/a:1008078328650
    6 schema:datePublished 2017-03-25
    7 schema:datePublishedReg 2017-03-25
    8 schema:description In this paper, we propose a multi-resolution affine block-based tracker for motion estimation and compensation, compatible with existing video coding standards such as H.264 and HEVC. We propose three modifications to traditional motion compensation techniques in video coding standards such as H.264 and HEVC. First, we replace traditional search methods with an efficient particle filtering-based method, which incorporates information from both spatial and temporal continuity. Second, we use a higher order linear model in place of the traditional translation motion model in these standards to efficiently represent complex motions such as rotation and zoom. Third, we propose a multi-resolution framework that enables efficient parameter estimation. Results of extensive experimentation show reduced residual energy and better Peak Signal-to-Noise Ratio (PSNR, hereafter) as compared to H.264/HEVC for instance, especially in regions of complex motion such as zooming and rotation.
    9 schema:genre article
    10 schema:isAccessibleForFree false
    11 schema:isPartOf N50cd3afa672846058bfc415b5a4f741a
    12 Nb7c74a7a5208432db70ce0790979bddc
    13 sg:journal.1358858
    14 schema:keywords HEVC
    15 affine motion compensation
    16 approach
    17 better peak signal
    18 coding standards
    19 compensation
    20 compensation technique
    21 complex motion
    22 continuity
    23 efficient parameter estimation
    24 energy
    25 estimation
    26 experimentation show
    27 filtering
    28 filtering-based method
    29 framework
    30 high order linear model
    31 importance sampling
    32 information
    33 instances
    34 linear model
    35 method
    36 model
    37 modification
    38 motion
    39 motion compensation
    40 motion compensation technique
    41 motion estimation
    42 motion model
    43 multi-resolution approach
    44 multi-resolution framework
    45 noise ratio
    46 order linear model
    47 paper
    48 parameter estimation
    49 particle filtering
    50 particle filtering-based method
    51 peak signal
    52 place
    53 ratio
    54 region
    55 residual energy
    56 results
    57 rotation
    58 sampling
    59 search method
    60 show
    61 signals
    62 standards
    63 technique
    64 temporal continuity
    65 tracker
    66 traditional search methods
    67 translation motion model
    68 video
    69 video coding standards
    70 zoom
    71 zooming
    72 schema:name Restricted affine motion compensation and estimation in video coding with particle filtering and importance sampling: a multi-resolution approach
    73 schema:pagination 271-284
    74 schema:productId N1f7e4fbbb58843dab478f7e3bfa9ce48
    75 Ncb62bbbee62f40fcbc0392a2d49f4c39
    76 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084022568
    77 https://doi.org/10.1007/s00530-017-0543-z
    78 schema:sdDatePublished 2022-12-01T06:36
    79 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    80 schema:sdPublisher Nbfb2da05777a4a89a9ad90787b371036
    81 schema:url https://doi.org/10.1007/s00530-017-0543-z
    82 sgo:license sg:explorer/license/
    83 sgo:sdDataset articles
    84 rdf:type schema:ScholarlyArticle
    85 N1f7e4fbbb58843dab478f7e3bfa9ce48 schema:name doi
    86 schema:value 10.1007/s00530-017-0543-z
    87 rdf:type schema:PropertyValue
    88 N50cd3afa672846058bfc415b5a4f741a schema:volumeNumber 24
    89 rdf:type schema:PublicationVolume
    90 N844c4781cbfb474dabeaa33571ef91a0 rdf:first sg:person.013745772671.37
    91 rdf:rest Nfeb45af362e44ebfbba69c04c7291b17
    92 N97f7a86ef611451db5d99f17707873bf rdf:first sg:person.0640201004.42
    93 rdf:rest Nd6c898fb84aa471280e55e5f86f3a90c
    94 Nb7c74a7a5208432db70ce0790979bddc schema:issueNumber 3
    95 rdf:type schema:PublicationIssue
    96 Nbfb2da05777a4a89a9ad90787b371036 schema:name Springer Nature - SN SciGraph project
    97 rdf:type schema:Organization
    98 Ncb62bbbee62f40fcbc0392a2d49f4c39 schema:name dimensions_id
    99 schema:value pub.1084022568
    100 rdf:type schema:PropertyValue
    101 Nccb8c1cb7c6e44f0836aabdabea3f00a rdf:first sg:person.016656542563.01
    102 rdf:rest rdf:nil
    103 Nd6c898fb84aa471280e55e5f86f3a90c rdf:first sg:person.015134602305.12
    104 rdf:rest Nccb8c1cb7c6e44f0836aabdabea3f00a
    105 Nfeb45af362e44ebfbba69c04c7291b17 rdf:first sg:person.014337221705.05
    106 rdf:rest N97f7a86ef611451db5d99f17707873bf
    107 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    108 schema:name Information and Computing Sciences
    109 rdf:type schema:DefinedTerm
    110 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    111 schema:name Artificial Intelligence and Image Processing
    112 rdf:type schema:DefinedTerm
    113 sg:journal.1358858 schema:issn 0942-4962
    114 1432-1882
    115 schema:name Multimedia Systems
    116 schema:publisher Springer Nature
    117 rdf:type schema:Periodical
    118 sg:person.013745772671.37 schema:affiliation grid-institutes:grid.417967.a
    119 schema:familyName Jha
    120 schema:givenName Mithilesh Kumar
    121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013745772671.37
    122 rdf:type schema:Person
    123 sg:person.014337221705.05 schema:affiliation grid-institutes:grid.417967.a
    124 schema:familyName Chaudhary
    125 schema:givenName Ravi
    126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014337221705.05
    127 rdf:type schema:Person
    128 sg:person.015134602305.12 schema:affiliation grid-institutes:grid.417967.a
    129 schema:familyName Mathur
    130 schema:givenName Mona
    131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015134602305.12
    132 rdf:type schema:Person
    133 sg:person.016656542563.01 schema:affiliation grid-institutes:grid.417967.a
    134 schema:familyName Lall
    135 schema:givenName Brejesh
    136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016656542563.01
    137 rdf:type schema:Person
    138 sg:person.0640201004.42 schema:affiliation grid-institutes:grid.417967.a
    139 schema:familyName Roy
    140 schema:givenName Sumantra Dutta
    141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640201004.42
    142 rdf:type schema:Person
    143 sg:pub.10.1007/bf01420982 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018404989
    144 https://doi.org/10.1007/bf01420982
    145 rdf:type schema:CreativeWork
    146 sg:pub.10.1023/a:1008078328650 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012498237
    147 https://doi.org/10.1023/a:1008078328650
    148 rdf:type schema:CreativeWork
    149 grid-institutes:grid.417967.a schema:alternateName Department of Electronic Engineering, I.I.T. Delhi, Hauz Khas, 110 016, New Delhi, India
    150 schema:name Department of Electronic Engineering, I.I.T. Delhi, Hauz Khas, 110 016, New Delhi, India
    151 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...