Lower bounds for the first eigenvalue of the Steklov problem on graphs View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Hélène Perrin

ABSTRACT

We give lower bounds for the first non-zero Steklov eigenvalue on connected graphs. These bounds depend on the extrinsic diameter of the boundary and not on the diameter of the graph. We obtain a lower bound which is sharp when the cardinal of the boundary is 2, and asymptotically sharp as the diameter of the boundary tends to infinity in the other cases. We also investigate the case of weighted graphs and compare our result to the Cheeger inequality. More... »

PAGES

67

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00526-019-1516-1

DOI

http://dx.doi.org/10.1007/s00526-019-1516-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112898044


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Neuch\u00e2tel", 
          "id": "https://www.grid.ac/institutes/grid.10711.36", 
          "name": [
            "Institut de math\u00e9matiques, Universit\u00e9 de Neuch\u00e2tel, Rue Emile-Argand 11, 2000, Neuch\u00e2tel, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Perrin", 
        "givenName": "H\u00e9l\u00e8ne", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10455-005-5215-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021568753", 
          "https://doi.org/10.1007/s10455-005-5215-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10455-005-5215-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021568753", 
          "https://doi.org/10.1007/s10455-005-5215-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1033567232", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-73510-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033567232", 
          "https://doi.org/10.1007/978-3-540-73510-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-73510-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033567232", 
          "https://doi.org/10.1007/978-3-540-73510-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4171/jst/164", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085876610"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00526-017-1260-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092589973", 
          "https://doi.org/10.1007/s00526-017-1260-3"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "We give lower bounds for the first non-zero Steklov eigenvalue on connected graphs. These bounds depend on the extrinsic diameter of the boundary and not on the diameter of the graph. We obtain a lower bound which is sharp when the cardinal of the boundary is 2, and asymptotically sharp as the diameter of the boundary tends to infinity in the other cases. We also investigate the case of weighted graphs and compare our result to the Cheeger inequality.", 
    "genre": "non_research_article", 
    "id": "sg:pub.10.1007/s00526-019-1516-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1043284", 
        "issn": [
          "0944-2669", 
          "1432-0835"
        ], 
        "name": "Calculus of Variations and Partial Differential Equations", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "58"
      }
    ], 
    "name": "Lower bounds for the first eigenvalue of the Steklov problem on graphs", 
    "pagination": "67", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5e5d3397e86621ef3800b0a29962e2c956d833faa27514c48c3fabcff513e7b6"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00526-019-1516-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112898044"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00526-019-1516-1", 
      "https://app.dimensions.ai/details/publication/pub.1112898044"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:41", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70053_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00526-019-1516-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00526-019-1516-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00526-019-1516-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00526-019-1516-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00526-019-1516-1'


 

This table displays all metadata directly associated to this object as RDF triples.

77 TRIPLES      21 PREDICATES      32 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00526-019-1516-1 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N529f4a6ca82244119ef37a2d4e89e8c6
4 schema:citation sg:pub.10.1007/978-3-540-73510-6
5 sg:pub.10.1007/s00526-017-1260-3
6 sg:pub.10.1007/s10455-005-5215-0
7 https://app.dimensions.ai/details/publication/pub.1033567232
8 https://doi.org/10.4171/jst/164
9 schema:datePublished 2019-04
10 schema:datePublishedReg 2019-04-01
11 schema:description We give lower bounds for the first non-zero Steklov eigenvalue on connected graphs. These bounds depend on the extrinsic diameter of the boundary and not on the diameter of the graph. We obtain a lower bound which is sharp when the cardinal of the boundary is 2, and asymptotically sharp as the diameter of the boundary tends to infinity in the other cases. We also investigate the case of weighted graphs and compare our result to the Cheeger inequality.
12 schema:genre non_research_article
13 schema:inLanguage en
14 schema:isAccessibleForFree false
15 schema:isPartOf N8383625d412c4cb586e8bb0e2017e54b
16 Na54c850a7ea548dfb2196d0c27c642d1
17 sg:journal.1043284
18 schema:name Lower bounds for the first eigenvalue of the Steklov problem on graphs
19 schema:pagination 67
20 schema:productId N3809680f4b0a47f1adb6fb3c981ececb
21 N9698be4b88e342a190f53b8b027250cf
22 Nba7f8612d5874b6a84951419b078de3d
23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112898044
24 https://doi.org/10.1007/s00526-019-1516-1
25 schema:sdDatePublished 2019-04-11T12:41
26 schema:sdLicense https://scigraph.springernature.com/explorer/license/
27 schema:sdPublisher Nd6d3e559bfa7448aabaa1a035822bac1
28 schema:url https://link.springer.com/10.1007%2Fs00526-019-1516-1
29 sgo:license sg:explorer/license/
30 sgo:sdDataset articles
31 rdf:type schema:ScholarlyArticle
32 N3809680f4b0a47f1adb6fb3c981ececb schema:name doi
33 schema:value 10.1007/s00526-019-1516-1
34 rdf:type schema:PropertyValue
35 N49d32e2afc3748609810428d6450a074 schema:affiliation https://www.grid.ac/institutes/grid.10711.36
36 schema:familyName Perrin
37 schema:givenName Hélène
38 rdf:type schema:Person
39 N529f4a6ca82244119ef37a2d4e89e8c6 rdf:first N49d32e2afc3748609810428d6450a074
40 rdf:rest rdf:nil
41 N8383625d412c4cb586e8bb0e2017e54b schema:volumeNumber 58
42 rdf:type schema:PublicationVolume
43 N9698be4b88e342a190f53b8b027250cf schema:name readcube_id
44 schema:value 5e5d3397e86621ef3800b0a29962e2c956d833faa27514c48c3fabcff513e7b6
45 rdf:type schema:PropertyValue
46 Na54c850a7ea548dfb2196d0c27c642d1 schema:issueNumber 2
47 rdf:type schema:PublicationIssue
48 Nba7f8612d5874b6a84951419b078de3d schema:name dimensions_id
49 schema:value pub.1112898044
50 rdf:type schema:PropertyValue
51 Nd6d3e559bfa7448aabaa1a035822bac1 schema:name Springer Nature - SN SciGraph project
52 rdf:type schema:Organization
53 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
54 schema:name Mathematical Sciences
55 rdf:type schema:DefinedTerm
56 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
57 schema:name Pure Mathematics
58 rdf:type schema:DefinedTerm
59 sg:journal.1043284 schema:issn 0944-2669
60 1432-0835
61 schema:name Calculus of Variations and Partial Differential Equations
62 rdf:type schema:Periodical
63 sg:pub.10.1007/978-3-540-73510-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033567232
64 https://doi.org/10.1007/978-3-540-73510-6
65 rdf:type schema:CreativeWork
66 sg:pub.10.1007/s00526-017-1260-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092589973
67 https://doi.org/10.1007/s00526-017-1260-3
68 rdf:type schema:CreativeWork
69 sg:pub.10.1007/s10455-005-5215-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021568753
70 https://doi.org/10.1007/s10455-005-5215-0
71 rdf:type schema:CreativeWork
72 https://app.dimensions.ai/details/publication/pub.1033567232 schema:CreativeWork
73 https://doi.org/10.4171/jst/164 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085876610
74 rdf:type schema:CreativeWork
75 https://www.grid.ac/institutes/grid.10711.36 schema:alternateName University of Neuchâtel
76 schema:name Institut de mathématiques, Université de Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland
77 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...