Lower bounds for the first eigenvalue of the Steklov problem on graphs View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Hélène Perrin

ABSTRACT

We give lower bounds for the first non-zero Steklov eigenvalue on connected graphs. These bounds depend on the extrinsic diameter of the boundary and not on the diameter of the graph. We obtain a lower bound which is sharp when the cardinal of the boundary is 2, and asymptotically sharp as the diameter of the boundary tends to infinity in the other cases. We also investigate the case of weighted graphs and compare our result to the Cheeger inequality. More... »

PAGES

67

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00526-019-1516-1

DOI

http://dx.doi.org/10.1007/s00526-019-1516-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112898044


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Neuch\u00e2tel", 
          "id": "https://www.grid.ac/institutes/grid.10711.36", 
          "name": [
            "Institut de math\u00e9matiques, Universit\u00e9 de Neuch\u00e2tel, Rue Emile-Argand 11, 2000, Neuch\u00e2tel, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Perrin", 
        "givenName": "H\u00e9l\u00e8ne", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10455-005-5215-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021568753", 
          "https://doi.org/10.1007/s10455-005-5215-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10455-005-5215-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021568753", 
          "https://doi.org/10.1007/s10455-005-5215-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1033567232", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-73510-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033567232", 
          "https://doi.org/10.1007/978-3-540-73510-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-73510-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033567232", 
          "https://doi.org/10.1007/978-3-540-73510-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4171/jst/164", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085876610"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00526-017-1260-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092589973", 
          "https://doi.org/10.1007/s00526-017-1260-3"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "We give lower bounds for the first non-zero Steklov eigenvalue on connected graphs. These bounds depend on the extrinsic diameter of the boundary and not on the diameter of the graph. We obtain a lower bound which is sharp when the cardinal of the boundary is 2, and asymptotically sharp as the diameter of the boundary tends to infinity in the other cases. We also investigate the case of weighted graphs and compare our result to the Cheeger inequality.", 
    "genre": "non_research_article", 
    "id": "sg:pub.10.1007/s00526-019-1516-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1043284", 
        "issn": [
          "0944-2669", 
          "1432-0835"
        ], 
        "name": "Calculus of Variations and Partial Differential Equations", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "58"
      }
    ], 
    "name": "Lower bounds for the first eigenvalue of the Steklov problem on graphs", 
    "pagination": "67", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5e5d3397e86621ef3800b0a29962e2c956d833faa27514c48c3fabcff513e7b6"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00526-019-1516-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112898044"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00526-019-1516-1", 
      "https://app.dimensions.ai/details/publication/pub.1112898044"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:41", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70053_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00526-019-1516-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00526-019-1516-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00526-019-1516-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00526-019-1516-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00526-019-1516-1'


 

This table displays all metadata directly associated to this object as RDF triples.

77 TRIPLES      21 PREDICATES      32 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00526-019-1516-1 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N729b2dca9e3c4ea9abe974df8c93eb14
4 schema:citation sg:pub.10.1007/978-3-540-73510-6
5 sg:pub.10.1007/s00526-017-1260-3
6 sg:pub.10.1007/s10455-005-5215-0
7 https://app.dimensions.ai/details/publication/pub.1033567232
8 https://doi.org/10.4171/jst/164
9 schema:datePublished 2019-04
10 schema:datePublishedReg 2019-04-01
11 schema:description We give lower bounds for the first non-zero Steklov eigenvalue on connected graphs. These bounds depend on the extrinsic diameter of the boundary and not on the diameter of the graph. We obtain a lower bound which is sharp when the cardinal of the boundary is 2, and asymptotically sharp as the diameter of the boundary tends to infinity in the other cases. We also investigate the case of weighted graphs and compare our result to the Cheeger inequality.
12 schema:genre non_research_article
13 schema:inLanguage en
14 schema:isAccessibleForFree false
15 schema:isPartOf N8a01491049884a7086f2f3685026335c
16 N95acbf28ca05469c876f7a34c5c06256
17 sg:journal.1043284
18 schema:name Lower bounds for the first eigenvalue of the Steklov problem on graphs
19 schema:pagination 67
20 schema:productId N37cbf6d635444deabbce5265c9e5ca2f
21 N77e58d517dbd4afd81ad4dbf35c71a17
22 N77fa3c298b22439099dc091ebb18fc03
23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112898044
24 https://doi.org/10.1007/s00526-019-1516-1
25 schema:sdDatePublished 2019-04-11T12:41
26 schema:sdLicense https://scigraph.springernature.com/explorer/license/
27 schema:sdPublisher N5c95bdbb4ac84a1e9516ed6bd927b356
28 schema:url https://link.springer.com/10.1007%2Fs00526-019-1516-1
29 sgo:license sg:explorer/license/
30 sgo:sdDataset articles
31 rdf:type schema:ScholarlyArticle
32 N37cbf6d635444deabbce5265c9e5ca2f schema:name dimensions_id
33 schema:value pub.1112898044
34 rdf:type schema:PropertyValue
35 N401a319310c4473ea7466a50d5b08e6a schema:affiliation https://www.grid.ac/institutes/grid.10711.36
36 schema:familyName Perrin
37 schema:givenName Hélène
38 rdf:type schema:Person
39 N5c95bdbb4ac84a1e9516ed6bd927b356 schema:name Springer Nature - SN SciGraph project
40 rdf:type schema:Organization
41 N729b2dca9e3c4ea9abe974df8c93eb14 rdf:first N401a319310c4473ea7466a50d5b08e6a
42 rdf:rest rdf:nil
43 N77e58d517dbd4afd81ad4dbf35c71a17 schema:name doi
44 schema:value 10.1007/s00526-019-1516-1
45 rdf:type schema:PropertyValue
46 N77fa3c298b22439099dc091ebb18fc03 schema:name readcube_id
47 schema:value 5e5d3397e86621ef3800b0a29962e2c956d833faa27514c48c3fabcff513e7b6
48 rdf:type schema:PropertyValue
49 N8a01491049884a7086f2f3685026335c schema:volumeNumber 58
50 rdf:type schema:PublicationVolume
51 N95acbf28ca05469c876f7a34c5c06256 schema:issueNumber 2
52 rdf:type schema:PublicationIssue
53 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
54 schema:name Mathematical Sciences
55 rdf:type schema:DefinedTerm
56 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
57 schema:name Pure Mathematics
58 rdf:type schema:DefinedTerm
59 sg:journal.1043284 schema:issn 0944-2669
60 1432-0835
61 schema:name Calculus of Variations and Partial Differential Equations
62 rdf:type schema:Periodical
63 sg:pub.10.1007/978-3-540-73510-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033567232
64 https://doi.org/10.1007/978-3-540-73510-6
65 rdf:type schema:CreativeWork
66 sg:pub.10.1007/s00526-017-1260-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092589973
67 https://doi.org/10.1007/s00526-017-1260-3
68 rdf:type schema:CreativeWork
69 sg:pub.10.1007/s10455-005-5215-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021568753
70 https://doi.org/10.1007/s10455-005-5215-0
71 rdf:type schema:CreativeWork
72 https://app.dimensions.ai/details/publication/pub.1033567232 schema:CreativeWork
73 https://doi.org/10.4171/jst/164 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085876610
74 rdf:type schema:CreativeWork
75 https://www.grid.ac/institutes/grid.10711.36 schema:alternateName University of Neuchâtel
76 schema:name Institut de mathématiques, Université de Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland
77 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...