Ontology type: schema:ScholarlyArticle
2019-04
AUTHORSHélène Perrin
ABSTRACTWe give lower bounds for the first non-zero Steklov eigenvalue on connected graphs. These bounds depend on the extrinsic diameter of the boundary and not on the diameter of the graph. We obtain a lower bound which is sharp when the cardinal of the boundary is 2, and asymptotically sharp as the diameter of the boundary tends to infinity in the other cases. We also investigate the case of weighted graphs and compare our result to the Cheeger inequality. More... »
PAGES67
http://scigraph.springernature.com/pub.10.1007/s00526-019-1516-1
DOIhttp://dx.doi.org/10.1007/s00526-019-1516-1
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1112898044
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "University of Neuch\u00e2tel",
"id": "https://www.grid.ac/institutes/grid.10711.36",
"name": [
"Institut de math\u00e9matiques, Universit\u00e9 de Neuch\u00e2tel, Rue Emile-Argand 11, 2000, Neuch\u00e2tel, Switzerland"
],
"type": "Organization"
},
"familyName": "Perrin",
"givenName": "H\u00e9l\u00e8ne",
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/s10455-005-5215-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1021568753",
"https://doi.org/10.1007/s10455-005-5215-0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10455-005-5215-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1021568753",
"https://doi.org/10.1007/s10455-005-5215-0"
],
"type": "CreativeWork"
},
{
"id": "https://app.dimensions.ai/details/publication/pub.1033567232",
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-540-73510-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1033567232",
"https://doi.org/10.1007/978-3-540-73510-6"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-540-73510-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1033567232",
"https://doi.org/10.1007/978-3-540-73510-6"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.4171/jst/164",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1085876610"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00526-017-1260-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1092589973",
"https://doi.org/10.1007/s00526-017-1260-3"
],
"type": "CreativeWork"
}
],
"datePublished": "2019-04",
"datePublishedReg": "2019-04-01",
"description": "We give lower bounds for the first non-zero Steklov eigenvalue on connected graphs. These bounds depend on the extrinsic diameter of the boundary and not on the diameter of the graph. We obtain a lower bound which is sharp when the cardinal of the boundary is 2, and asymptotically sharp as the diameter of the boundary tends to infinity in the other cases. We also investigate the case of weighted graphs and compare our result to the Cheeger inequality.",
"genre": "non_research_article",
"id": "sg:pub.10.1007/s00526-019-1516-1",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1043284",
"issn": [
"0944-2669",
"1432-0835"
],
"name": "Calculus of Variations and Partial Differential Equations",
"type": "Periodical"
},
{
"issueNumber": "2",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "58"
}
],
"name": "Lower bounds for the first eigenvalue of the Steklov problem on graphs",
"pagination": "67",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"5e5d3397e86621ef3800b0a29962e2c956d833faa27514c48c3fabcff513e7b6"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s00526-019-1516-1"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1112898044"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s00526-019-1516-1",
"https://app.dimensions.ai/details/publication/pub.1112898044"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-11T12:41",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70053_00000003.jsonl",
"type": "ScholarlyArticle",
"url": "https://link.springer.com/10.1007%2Fs00526-019-1516-1"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00526-019-1516-1'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00526-019-1516-1'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00526-019-1516-1'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00526-019-1516-1'
This table displays all metadata directly associated to this object as RDF triples.
77 TRIPLES
21 PREDICATES
32 URIs
19 LITERALS
7 BLANK NODES