A universal thin film model for Ginzburg–Landau energy with dipolar interaction View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-02-14

AUTHORS

Cyrill B. Muratov

ABSTRACT

We present an analytical treatment of a three-dimensional variational model of a system that exhibits a second-order phase transition in the presence of dipolar interactions. Within the framework of Ginzburg–Landau theory, we concentrate on the case in which the domain occupied by the sample has the shape of a flat thin film and obtain a reduced two-dimensional, non-local variational model that describes the energetics of the system in terms of the order parameter averages across the film thickness. Namely, we show that the reduced two-dimensional model is in a certain sense asymptotically equivalent to the original three-dimensional model for small film thicknesses. Using this asymptotic equivalence, we analyze two different thin film limits for the full three-dimensional model via the methods of Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document}-convergence applied to the reduced two-dimensional model. In the first regime, in which the film thickness vanishes while all other parameters remain fixed, we recover the local two-dimensional Ginzburg–Landau model. On the other hand, when the film thickness vanishes while the sample’s lateral dimensions diverge at the right rate, we show that the system exhibits a transition from homogeneous to spatially modulated global energy minimizers. We identify a sharp threshold for this transition. More... »

PAGES

52

References to SciGraph publications

  • 1998. Ferroelectric Phenomena in Crystals, Physical Foundations in NONE
  • 2006-07-13. 2-d stability of the Néel wall in CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS
  • 1999-03. Domain Branching in Uniaxial Ferromagnets: A Scaling Law for the Minimum Energy in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2015-06-10. Orbital-Free Density Functional Theory of Out-of-Plane Charge Screening in Graphene in JOURNAL OF NONLINEAR SCIENCE
  • 1987-06. The gradient theory of phase transitions and the minimal interface criterion in ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS
  • 2001. Elliptic Partial Differential Equations of Second Order in NONE
  • 2010-07-29. Droplet Phases in Non-local Ginzburg-Landau Models with Coulomb Repulsion in Two Dimensions in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2011-08-19. Domain Structure of Bulk Ferromagnetic Crystals in Applied Fields Near Saturation in JOURNAL OF NONLINEAR SCIENCE
  • 2008-04-02. Asymptotic expansions by Γ-convergence in CONTINUUM MECHANICS AND THERMODYNAMICS
  • 2009-11-03. Domain branching in uniaxial ferromagnets: asymptotic behavior of the energy in CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS
  • 2005-04-28. Another Thin-Film Limit of Micromagnetics in ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS
  • 2018-11-07. Magnetic Domains in Thin Ferromagnetic Films with Strong Perpendicular Anisotropy in ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00526-019-1493-4

    DOI

    http://dx.doi.org/10.1007/s00526-019-1493-4

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1112141594


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Applied Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Mathematical Sciences, New Jersey Institute of Technology, 07102, Newark, NJ, USA", 
              "id": "http://www.grid.ac/institutes/grid.260896.3", 
              "name": [
                "Department of Mathematical Sciences, New Jersey Institute of Technology, 07102, Newark, NJ, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Muratov", 
            "givenName": "Cyrill B.", 
            "id": "sg:person.01031424704.08", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01031424704.08"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf00251230", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035706226", 
              "https://doi.org/10.1007/bf00251230"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00526-009-0281-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014324716", 
              "https://doi.org/10.1007/s00526-009-0281-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s002200050549", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014046312", 
              "https://doi.org/10.1007/s002200050549"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00205-005-0372-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040373545", 
              "https://doi.org/10.1007/s00205-005-0372-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00332-015-9259-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001357939", 
              "https://doi.org/10.1007/s00332-015-9259-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-60293-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052894661", 
              "https://doi.org/10.1007/978-3-642-60293-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00205-018-1332-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109759577", 
              "https://doi.org/10.1007/s00205-018-1332-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00526-006-0019-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029287562", 
              "https://doi.org/10.1007/s00526-006-0019-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00332-011-9105-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047092063", 
              "https://doi.org/10.1007/s00332-011-9105-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00161-008-0072-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008067044", 
              "https://doi.org/10.1007/s00161-008-0072-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-010-1094-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043017374", 
              "https://doi.org/10.1007/s00220-010-1094-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-61798-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011077577", 
              "https://doi.org/10.1007/978-3-642-61798-0"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-02-14", 
        "datePublishedReg": "2019-02-14", 
        "description": "We present an analytical treatment of a three-dimensional variational model of a system that exhibits a second-order phase transition in the presence of dipolar interactions. Within the framework of Ginzburg\u2013Landau theory, we concentrate on the case in which the domain occupied by the sample has the shape of a flat thin film and obtain a reduced two-dimensional, non-local variational model that describes the energetics of the system in terms of the order parameter averages across the film thickness. Namely, we show that the reduced two-dimensional model is in a certain sense asymptotically equivalent to the original three-dimensional model for small film thicknesses. Using this asymptotic equivalence, we analyze two different thin film limits for the full three-dimensional model via the methods of \u0393\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\Gamma $$\\end{document}-convergence applied to the reduced two-dimensional model. In the first regime, in which the film thickness vanishes while all other parameters remain fixed, we recover the local two-dimensional Ginzburg\u2013Landau model. On the other hand, when the film thickness vanishes while the sample\u2019s lateral dimensions diverge at the right rate, we show that the system exhibits a transition from homogeneous to spatially modulated global energy minimizers. We identify a sharp threshold for this transition.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00526-019-1493-4", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.5126042", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.3485828", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1043284", 
            "issn": [
              "0944-2669", 
              "1432-0835"
            ], 
            "name": "Calculus of Variations and Partial Differential Equations", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "58"
          }
        ], 
        "keywords": [
          "two-dimensional model", 
          "three-dimensional variational model", 
          "second-order phase transition", 
          "Ginzburg-Landau theory", 
          "variational model", 
          "two-dimensional Ginzburg", 
          "Ginzburg\u2013Landau energy", 
          "thin film limit", 
          "sample lateral dimensions", 
          "thin film model", 
          "film thickness", 
          "dipolar interactions", 
          "asymptotic equivalence", 
          "global energy minimizers", 
          "parameter averages", 
          "small film thickness", 
          "certain sense", 
          "analytical treatment", 
          "three-dimensional model", 
          "Landau model", 
          "flat thin films", 
          "sharp threshold", 
          "energy minimizers", 
          "phase transition", 
          "film model", 
          "thin films", 
          "lateral dimensions", 
          "first regime", 
          "Ginzburg", 
          "minimizers", 
          "model", 
          "convergence", 
          "transition", 
          "theory", 
          "equivalence", 
          "system", 
          "parameters", 
          "regime", 
          "dimensions", 
          "thickness", 
          "right rate", 
          "terms", 
          "framework", 
          "films", 
          "shape", 
          "sense", 
          "limit", 
          "energy", 
          "interaction", 
          "cases", 
          "domain", 
          "threshold", 
          "energetics", 
          "average", 
          "hand", 
          "presence", 
          "samples", 
          "rate", 
          "treatment", 
          "method", 
          "non-local variational model", 
          "order parameter averages", 
          "different thin film limits", 
          "film limits", 
          "universal thin film model"
        ], 
        "name": "A universal thin film model for Ginzburg\u2013Landau energy with dipolar interaction", 
        "pagination": "52", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1112141594"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00526-019-1493-4"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00526-019-1493-4", 
          "https://app.dimensions.ai/details/publication/pub.1112141594"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-12-01T19:43", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_798.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00526-019-1493-4"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00526-019-1493-4'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00526-019-1493-4'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00526-019-1493-4'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00526-019-1493-4'


     

    This table displays all metadata directly associated to this object as RDF triples.

    179 TRIPLES      22 PREDICATES      103 URIs      82 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00526-019-1493-4 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 anzsrc-for:0102
    4 schema:author N79ccc172e70e48ef84fcd978c8e62fa0
    5 schema:citation sg:pub.10.1007/978-3-642-60293-1
    6 sg:pub.10.1007/978-3-642-61798-0
    7 sg:pub.10.1007/bf00251230
    8 sg:pub.10.1007/s00161-008-0072-2
    9 sg:pub.10.1007/s00205-005-0372-7
    10 sg:pub.10.1007/s00205-018-1332-3
    11 sg:pub.10.1007/s00220-010-1094-8
    12 sg:pub.10.1007/s002200050549
    13 sg:pub.10.1007/s00332-011-9105-2
    14 sg:pub.10.1007/s00332-015-9259-4
    15 sg:pub.10.1007/s00526-006-0019-z
    16 sg:pub.10.1007/s00526-009-0281-y
    17 schema:datePublished 2019-02-14
    18 schema:datePublishedReg 2019-02-14
    19 schema:description We present an analytical treatment of a three-dimensional variational model of a system that exhibits a second-order phase transition in the presence of dipolar interactions. Within the framework of Ginzburg–Landau theory, we concentrate on the case in which the domain occupied by the sample has the shape of a flat thin film and obtain a reduced two-dimensional, non-local variational model that describes the energetics of the system in terms of the order parameter averages across the film thickness. Namely, we show that the reduced two-dimensional model is in a certain sense asymptotically equivalent to the original three-dimensional model for small film thicknesses. Using this asymptotic equivalence, we analyze two different thin film limits for the full three-dimensional model via the methods of Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document}-convergence applied to the reduced two-dimensional model. In the first regime, in which the film thickness vanishes while all other parameters remain fixed, we recover the local two-dimensional Ginzburg–Landau model. On the other hand, when the film thickness vanishes while the sample’s lateral dimensions diverge at the right rate, we show that the system exhibits a transition from homogeneous to spatially modulated global energy minimizers. We identify a sharp threshold for this transition.
    20 schema:genre article
    21 schema:inLanguage en
    22 schema:isAccessibleForFree true
    23 schema:isPartOf N3aa43530c98443a49b5ddd570011dd09
    24 N9953052d48694088b60dfe967d484fc6
    25 sg:journal.1043284
    26 schema:keywords Ginzburg
    27 Ginzburg-Landau theory
    28 Ginzburg–Landau energy
    29 Landau model
    30 analytical treatment
    31 asymptotic equivalence
    32 average
    33 cases
    34 certain sense
    35 convergence
    36 different thin film limits
    37 dimensions
    38 dipolar interactions
    39 domain
    40 energetics
    41 energy
    42 energy minimizers
    43 equivalence
    44 film limits
    45 film model
    46 film thickness
    47 films
    48 first regime
    49 flat thin films
    50 framework
    51 global energy minimizers
    52 hand
    53 interaction
    54 lateral dimensions
    55 limit
    56 method
    57 minimizers
    58 model
    59 non-local variational model
    60 order parameter averages
    61 parameter averages
    62 parameters
    63 phase transition
    64 presence
    65 rate
    66 regime
    67 right rate
    68 sample lateral dimensions
    69 samples
    70 second-order phase transition
    71 sense
    72 shape
    73 sharp threshold
    74 small film thickness
    75 system
    76 terms
    77 theory
    78 thickness
    79 thin film limit
    80 thin film model
    81 thin films
    82 three-dimensional model
    83 three-dimensional variational model
    84 threshold
    85 transition
    86 treatment
    87 two-dimensional Ginzburg
    88 two-dimensional model
    89 universal thin film model
    90 variational model
    91 schema:name A universal thin film model for Ginzburg–Landau energy with dipolar interaction
    92 schema:pagination 52
    93 schema:productId N736acb73d26a49828aff642954ec8c13
    94 Nb98f35c33651461f86db12ff45627db8
    95 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112141594
    96 https://doi.org/10.1007/s00526-019-1493-4
    97 schema:sdDatePublished 2021-12-01T19:43
    98 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    99 schema:sdPublisher N95cfd7e9570740fcaafce4395d687ae2
    100 schema:url https://doi.org/10.1007/s00526-019-1493-4
    101 sgo:license sg:explorer/license/
    102 sgo:sdDataset articles
    103 rdf:type schema:ScholarlyArticle
    104 N3aa43530c98443a49b5ddd570011dd09 schema:volumeNumber 58
    105 rdf:type schema:PublicationVolume
    106 N736acb73d26a49828aff642954ec8c13 schema:name doi
    107 schema:value 10.1007/s00526-019-1493-4
    108 rdf:type schema:PropertyValue
    109 N79ccc172e70e48ef84fcd978c8e62fa0 rdf:first sg:person.01031424704.08
    110 rdf:rest rdf:nil
    111 N95cfd7e9570740fcaafce4395d687ae2 schema:name Springer Nature - SN SciGraph project
    112 rdf:type schema:Organization
    113 N9953052d48694088b60dfe967d484fc6 schema:issueNumber 2
    114 rdf:type schema:PublicationIssue
    115 Nb98f35c33651461f86db12ff45627db8 schema:name dimensions_id
    116 schema:value pub.1112141594
    117 rdf:type schema:PropertyValue
    118 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    119 schema:name Mathematical Sciences
    120 rdf:type schema:DefinedTerm
    121 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    122 schema:name Pure Mathematics
    123 rdf:type schema:DefinedTerm
    124 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
    125 schema:name Applied Mathematics
    126 rdf:type schema:DefinedTerm
    127 sg:grant.3485828 http://pending.schema.org/fundedItem sg:pub.10.1007/s00526-019-1493-4
    128 rdf:type schema:MonetaryGrant
    129 sg:grant.5126042 http://pending.schema.org/fundedItem sg:pub.10.1007/s00526-019-1493-4
    130 rdf:type schema:MonetaryGrant
    131 sg:journal.1043284 schema:issn 0944-2669
    132 1432-0835
    133 schema:name Calculus of Variations and Partial Differential Equations
    134 schema:publisher Springer Nature
    135 rdf:type schema:Periodical
    136 sg:person.01031424704.08 schema:affiliation grid-institutes:grid.260896.3
    137 schema:familyName Muratov
    138 schema:givenName Cyrill B.
    139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01031424704.08
    140 rdf:type schema:Person
    141 sg:pub.10.1007/978-3-642-60293-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052894661
    142 https://doi.org/10.1007/978-3-642-60293-1
    143 rdf:type schema:CreativeWork
    144 sg:pub.10.1007/978-3-642-61798-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011077577
    145 https://doi.org/10.1007/978-3-642-61798-0
    146 rdf:type schema:CreativeWork
    147 sg:pub.10.1007/bf00251230 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035706226
    148 https://doi.org/10.1007/bf00251230
    149 rdf:type schema:CreativeWork
    150 sg:pub.10.1007/s00161-008-0072-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008067044
    151 https://doi.org/10.1007/s00161-008-0072-2
    152 rdf:type schema:CreativeWork
    153 sg:pub.10.1007/s00205-005-0372-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040373545
    154 https://doi.org/10.1007/s00205-005-0372-7
    155 rdf:type schema:CreativeWork
    156 sg:pub.10.1007/s00205-018-1332-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109759577
    157 https://doi.org/10.1007/s00205-018-1332-3
    158 rdf:type schema:CreativeWork
    159 sg:pub.10.1007/s00220-010-1094-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043017374
    160 https://doi.org/10.1007/s00220-010-1094-8
    161 rdf:type schema:CreativeWork
    162 sg:pub.10.1007/s002200050549 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014046312
    163 https://doi.org/10.1007/s002200050549
    164 rdf:type schema:CreativeWork
    165 sg:pub.10.1007/s00332-011-9105-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047092063
    166 https://doi.org/10.1007/s00332-011-9105-2
    167 rdf:type schema:CreativeWork
    168 sg:pub.10.1007/s00332-015-9259-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001357939
    169 https://doi.org/10.1007/s00332-015-9259-4
    170 rdf:type schema:CreativeWork
    171 sg:pub.10.1007/s00526-006-0019-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1029287562
    172 https://doi.org/10.1007/s00526-006-0019-z
    173 rdf:type schema:CreativeWork
    174 sg:pub.10.1007/s00526-009-0281-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1014324716
    175 https://doi.org/10.1007/s00526-009-0281-y
    176 rdf:type schema:CreativeWork
    177 grid-institutes:grid.260896.3 schema:alternateName Department of Mathematical Sciences, New Jersey Institute of Technology, 07102, Newark, NJ, USA
    178 schema:name Department of Mathematical Sciences, New Jersey Institute of Technology, 07102, Newark, NJ, USA
    179 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...