The concentration behavior of ground state solutions for a fractional Schrödinger–Poisson system View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-07-13

AUTHORS

Yuanyang Yu, Fukun Zhao, Leiga Zhao

ABSTRACT

In this paper, we study the following fractional Schrödinger–Poisson system 0.1ε2s(-Δ)su+V(x)u+ϕu=K(x)|u|p-2u,inR3,ε2s(-Δ)sϕ=u2,inR3,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{array}{ll} \varepsilon ^{2s}(-\Delta )^s u +V(x)u+\phi u=K(x)|u|^{p-2}u,\,\,\text {in}~\mathbb {R}^3,\\ \\ \varepsilon ^{2s}(-\Delta )^s \phi =u^2,\,\,\text {in}~\mathbb {R}^3, \end{array} \right. \end{aligned}$$\end{document}where ε>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon >0$$\end{document} is a small parameter, 340\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon >0$$\end{document} sufficiently small, and we determine a concrete set related to the potentials V and K as the concentration position of these ground state solutions as ε→0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon \rightarrow 0$$\end{document}. Moreover, we considered some properties of these ground state solutions, such as convergence and decay estimate. More... »

PAGES

116

References to SciGraph publications

  • 2012-08-15. Existence and concentration of positive solutions for semilinear Schrödinger–Poisson systems in in CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS
  • 1992-03. On a class of nonlinear Schrödinger equations in ZEITSCHRIFT FÜR ANGEWANDTE MATHEMATIK UND PHYSIK
  • 2016-01-05. Sign-changing blowing-up solutions for supercritical Bahri–Coron’s problem in CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS
  • 1996. Minimax Theorems in NONE
  • 1987-03. Solutions of Hartree-Fock equations for Coulomb systems in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2008-12. On Schrödinger-Poisson Systems in MILAN JOURNAL OF MATHEMATICS
  • 2015-12-24. Concentrating standing waves for the fractional Schrödinger equation with critical nonlinearities in BOUNDARY VALUE PROBLEMS
  • 2013-11-28. Semiclassical limits of ground state solutions to Schrödinger systems in CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS
  • 1991-03. The effect of the domain topology on the number of positive solutions of nonlinear elliptic problems in ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS
  • 2011-02-25. Multiplicity and concentration of positive solutions for the Schrödinger–Poisson equations in ZEITSCHRIFT FÜR ANGEWANDTE MATHEMATIK UND PHYSIK
  • 2017. Fractional Elliptic Problems with Critical Growth in the Whole of ℝn in NONE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00526-017-1199-4

    DOI

    http://dx.doi.org/10.1007/s00526-017-1199-4

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1090666762


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Applied Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Mathematics, Yunnan Normal University, 650500, Kunming, People\u2019s Republic of China", 
              "id": "http://www.grid.ac/institutes/grid.410739.8", 
              "name": [
                "Department of Mathematics, Yunnan Normal University, 650500, Kunming, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yu", 
            "givenName": "Yuanyang", 
            "id": "sg:person.013777467723.29", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013777467723.29"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Mathematics, Yunnan Normal University, 650500, Kunming, People\u2019s Republic of China", 
              "id": "http://www.grid.ac/institutes/grid.410739.8", 
              "name": [
                "Department of Mathematics, Yunnan Normal University, 650500, Kunming, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhao", 
            "givenName": "Fukun", 
            "id": "sg:person.013510366035.37", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013510366035.37"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Mathematics, Beijing University of Chemical Technology, 100029, Beijing, People\u2019s Republic of China", 
              "id": "http://www.grid.ac/institutes/grid.48166.3d", 
              "name": [
                "Department of Mathematics, Beijing University of Chemical Technology, 100029, Beijing, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhao", 
            "givenName": "Leiga", 
            "id": "sg:person.011176664337.52", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011176664337.52"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00526-015-0942-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036928176", 
              "https://doi.org/10.1007/s00526-015-0942-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-88-7642-601-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084674895", 
              "https://doi.org/10.1007/978-88-7642-601-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00526-012-0548-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046054687", 
              "https://doi.org/10.1007/s00526-012-0548-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13661-015-0507-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021494874", 
              "https://doi.org/10.1186/s13661-015-0507-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4612-4146-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022709270", 
              "https://doi.org/10.1007/978-1-4612-4146-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00526-013-0693-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015309510", 
              "https://doi.org/10.1007/s00526-013-0693-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00033-011-0120-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053633966", 
              "https://doi.org/10.1007/s00033-011-0120-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00375686", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047405696", 
              "https://doi.org/10.1007/bf00375686"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00032-008-0094-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040446844", 
              "https://doi.org/10.1007/s00032-008-0094-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00946631", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003157030", 
              "https://doi.org/10.1007/bf00946631"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01205672", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030781830", 
              "https://doi.org/10.1007/bf01205672"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-07-13", 
        "datePublishedReg": "2017-07-13", 
        "description": "In this paper, we study the following fractional Schr\u00f6dinger\u2013Poisson system 0.1\u03b52s(-\u0394)su+V(x)u+\u03d5u=K(x)|u|p-2u,inR3,\u03b52s(-\u0394)s\u03d5=u2,inR3,\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\begin{aligned} \\left\\{ \\begin{array}{ll} \\varepsilon ^{2s}(-\\Delta )^s u +V(x)u+\\phi u=K(x)|u|^{p-2}u,\\,\\,\\text {in}~\\mathbb {R}^3,\\\\ \\\\ \\varepsilon ^{2s}(-\\Delta )^s \\phi =u^2,\\,\\,\\text {in}~\\mathbb {R}^3, \\end{array} \\right. \\end{aligned}$$\\end{document}where \u03b5>0\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\varepsilon >0$$\\end{document} is a small parameter, 340\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\varepsilon >0$$\\end{document} sufficiently small, and we determine a concrete set related to the potentials V and K as the concentration position of these ground state solutions as \u03b5\u21920\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\varepsilon \\rightarrow 0$$\\end{document}. Moreover, we considered some properties of these ground state solutions, such as convergence and decay estimate.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00526-017-1199-4", 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.8128021", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.8127877", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.8115930", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1043284", 
            "issn": [
              "0944-2669", 
              "1432-0835"
            ], 
            "name": "Calculus of Variations and Partial Differential Equations", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "56"
          }
        ], 
        "keywords": [
          "system", 
          "parameters", 
          "minimum", 
          "method", 
          "position", 
          "estimates", 
          "maximum", 
          "behavior", 
          "existence", 
          "properties", 
          "solution", 
          "paper", 
          "convergence", 
          "concentration behavior", 
          "concentration position", 
          "positive ground state solution", 
          "potentials V", 
          "Schr\u00f6dinger\u2013Poisson system", 
          "global minimum", 
          "global maximum", 
          "ground state solutions", 
          "state solutions", 
          "decay estimates", 
          "small parameter", 
          "positive global minimum", 
          "variational method"
        ], 
        "name": "The concentration behavior of ground state solutions for a fractional Schr\u00f6dinger\u2013Poisson system", 
        "pagination": "116", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1090666762"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00526-017-1199-4"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00526-017-1199-4", 
          "https://app.dimensions.ai/details/publication/pub.1090666762"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-10-01T06:44", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_746.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00526-017-1199-4"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00526-017-1199-4'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00526-017-1199-4'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00526-017-1199-4'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00526-017-1199-4'


     

    This table displays all metadata directly associated to this object as RDF triples.

    154 TRIPLES      21 PREDICATES      62 URIs      42 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00526-017-1199-4 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 anzsrc-for:0102
    4 schema:author N46d65a413ddc412db2db4f709b56c260
    5 schema:citation sg:pub.10.1007/978-1-4612-4146-1
    6 sg:pub.10.1007/978-88-7642-601-8
    7 sg:pub.10.1007/bf00375686
    8 sg:pub.10.1007/bf00946631
    9 sg:pub.10.1007/bf01205672
    10 sg:pub.10.1007/s00032-008-0094-z
    11 sg:pub.10.1007/s00033-011-0120-9
    12 sg:pub.10.1007/s00526-012-0548-6
    13 sg:pub.10.1007/s00526-013-0693-6
    14 sg:pub.10.1007/s00526-015-0942-y
    15 sg:pub.10.1186/s13661-015-0507-1
    16 schema:datePublished 2017-07-13
    17 schema:datePublishedReg 2017-07-13
    18 schema:description In this paper, we study the following fractional Schrödinger–Poisson system 0.1ε2s(-Δ)su+V(x)u+ϕu=K(x)|u|p-2u,inR3,ε2s(-Δ)sϕ=u2,inR3,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{array}{ll} \varepsilon ^{2s}(-\Delta )^s u +V(x)u+\phi u=K(x)|u|^{p-2}u,\,\,\text {in}~\mathbb {R}^3,\\ \\ \varepsilon ^{2s}(-\Delta )^s \phi =u^2,\,\,\text {in}~\mathbb {R}^3, \end{array} \right. \end{aligned}$$\end{document}where ε>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon >0$$\end{document} is a small parameter, 34<s<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{3}{4}<s<1$$\end{document}, 4<p<2s∗:=63-2s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4<p<2_s^*:=\frac{6}{3-2s}$$\end{document}, V(x)∈C(R3)∩L∞(R3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V(x)\in C(\mathbb {R}^3)\cap L^\infty (\mathbb {R}^3)$$\end{document} has positive global minimum, and K(x)∈C(R3)∩L∞(R3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K(x)\in C(\mathbb {R}^3)\cap L^\infty (\mathbb {R}^3)$$\end{document} is positive and has global maximum. We prove the existence of a positive ground state solution by using variational methods for each ε>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon >0$$\end{document} sufficiently small, and we determine a concrete set related to the potentials V and K as the concentration position of these ground state solutions as ε→0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon \rightarrow 0$$\end{document}. Moreover, we considered some properties of these ground state solutions, such as convergence and decay estimate.
    19 schema:genre article
    20 schema:isAccessibleForFree false
    21 schema:isPartOf N2c324f763a9e472f88ac06b67c218360
    22 Na303e433a8944196aea96da530009e5b
    23 sg:journal.1043284
    24 schema:keywords Schrödinger–Poisson system
    25 behavior
    26 concentration behavior
    27 concentration position
    28 convergence
    29 decay estimates
    30 estimates
    31 existence
    32 global maximum
    33 global minimum
    34 ground state solutions
    35 maximum
    36 method
    37 minimum
    38 paper
    39 parameters
    40 position
    41 positive global minimum
    42 positive ground state solution
    43 potentials V
    44 properties
    45 small parameter
    46 solution
    47 state solutions
    48 system
    49 variational method
    50 schema:name The concentration behavior of ground state solutions for a fractional Schrödinger–Poisson system
    51 schema:pagination 116
    52 schema:productId N3d6fd296619240139dee018b5b2d6a39
    53 Na3eaa184bb4c4379bf421dccb4141e1b
    54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090666762
    55 https://doi.org/10.1007/s00526-017-1199-4
    56 schema:sdDatePublished 2022-10-01T06:44
    57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    58 schema:sdPublisher N6e4b25be1c1440a0bc21769bd2b3d651
    59 schema:url https://doi.org/10.1007/s00526-017-1199-4
    60 sgo:license sg:explorer/license/
    61 sgo:sdDataset articles
    62 rdf:type schema:ScholarlyArticle
    63 N17fdd8f8e6354c57bdefc0706b0019a5 rdf:first sg:person.013510366035.37
    64 rdf:rest N8dca368c25ed4b9a81fee8011aaeccf4
    65 N2c324f763a9e472f88ac06b67c218360 schema:issueNumber 4
    66 rdf:type schema:PublicationIssue
    67 N3d6fd296619240139dee018b5b2d6a39 schema:name doi
    68 schema:value 10.1007/s00526-017-1199-4
    69 rdf:type schema:PropertyValue
    70 N46d65a413ddc412db2db4f709b56c260 rdf:first sg:person.013777467723.29
    71 rdf:rest N17fdd8f8e6354c57bdefc0706b0019a5
    72 N6e4b25be1c1440a0bc21769bd2b3d651 schema:name Springer Nature - SN SciGraph project
    73 rdf:type schema:Organization
    74 N8dca368c25ed4b9a81fee8011aaeccf4 rdf:first sg:person.011176664337.52
    75 rdf:rest rdf:nil
    76 Na303e433a8944196aea96da530009e5b schema:volumeNumber 56
    77 rdf:type schema:PublicationVolume
    78 Na3eaa184bb4c4379bf421dccb4141e1b schema:name dimensions_id
    79 schema:value pub.1090666762
    80 rdf:type schema:PropertyValue
    81 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    82 schema:name Mathematical Sciences
    83 rdf:type schema:DefinedTerm
    84 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    85 schema:name Pure Mathematics
    86 rdf:type schema:DefinedTerm
    87 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
    88 schema:name Applied Mathematics
    89 rdf:type schema:DefinedTerm
    90 sg:grant.8115930 http://pending.schema.org/fundedItem sg:pub.10.1007/s00526-017-1199-4
    91 rdf:type schema:MonetaryGrant
    92 sg:grant.8127877 http://pending.schema.org/fundedItem sg:pub.10.1007/s00526-017-1199-4
    93 rdf:type schema:MonetaryGrant
    94 sg:grant.8128021 http://pending.schema.org/fundedItem sg:pub.10.1007/s00526-017-1199-4
    95 rdf:type schema:MonetaryGrant
    96 sg:journal.1043284 schema:issn 0944-2669
    97 1432-0835
    98 schema:name Calculus of Variations and Partial Differential Equations
    99 schema:publisher Springer Nature
    100 rdf:type schema:Periodical
    101 sg:person.011176664337.52 schema:affiliation grid-institutes:grid.48166.3d
    102 schema:familyName Zhao
    103 schema:givenName Leiga
    104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011176664337.52
    105 rdf:type schema:Person
    106 sg:person.013510366035.37 schema:affiliation grid-institutes:grid.410739.8
    107 schema:familyName Zhao
    108 schema:givenName Fukun
    109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013510366035.37
    110 rdf:type schema:Person
    111 sg:person.013777467723.29 schema:affiliation grid-institutes:grid.410739.8
    112 schema:familyName Yu
    113 schema:givenName Yuanyang
    114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013777467723.29
    115 rdf:type schema:Person
    116 sg:pub.10.1007/978-1-4612-4146-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022709270
    117 https://doi.org/10.1007/978-1-4612-4146-1
    118 rdf:type schema:CreativeWork
    119 sg:pub.10.1007/978-88-7642-601-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084674895
    120 https://doi.org/10.1007/978-88-7642-601-8
    121 rdf:type schema:CreativeWork
    122 sg:pub.10.1007/bf00375686 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047405696
    123 https://doi.org/10.1007/bf00375686
    124 rdf:type schema:CreativeWork
    125 sg:pub.10.1007/bf00946631 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003157030
    126 https://doi.org/10.1007/bf00946631
    127 rdf:type schema:CreativeWork
    128 sg:pub.10.1007/bf01205672 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030781830
    129 https://doi.org/10.1007/bf01205672
    130 rdf:type schema:CreativeWork
    131 sg:pub.10.1007/s00032-008-0094-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1040446844
    132 https://doi.org/10.1007/s00032-008-0094-z
    133 rdf:type schema:CreativeWork
    134 sg:pub.10.1007/s00033-011-0120-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053633966
    135 https://doi.org/10.1007/s00033-011-0120-9
    136 rdf:type schema:CreativeWork
    137 sg:pub.10.1007/s00526-012-0548-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046054687
    138 https://doi.org/10.1007/s00526-012-0548-6
    139 rdf:type schema:CreativeWork
    140 sg:pub.10.1007/s00526-013-0693-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015309510
    141 https://doi.org/10.1007/s00526-013-0693-6
    142 rdf:type schema:CreativeWork
    143 sg:pub.10.1007/s00526-015-0942-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1036928176
    144 https://doi.org/10.1007/s00526-015-0942-y
    145 rdf:type schema:CreativeWork
    146 sg:pub.10.1186/s13661-015-0507-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021494874
    147 https://doi.org/10.1186/s13661-015-0507-1
    148 rdf:type schema:CreativeWork
    149 grid-institutes:grid.410739.8 schema:alternateName Department of Mathematics, Yunnan Normal University, 650500, Kunming, People’s Republic of China
    150 schema:name Department of Mathematics, Yunnan Normal University, 650500, Kunming, People’s Republic of China
    151 rdf:type schema:Organization
    152 grid-institutes:grid.48166.3d schema:alternateName Department of Mathematics, Beijing University of Chemical Technology, 100029, Beijing, People’s Republic of China
    153 schema:name Department of Mathematics, Beijing University of Chemical Technology, 100029, Beijing, People’s Republic of China
    154 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...