Ontology type: schema:ScholarlyArticle Open Access: True
2016-10
AUTHORSEnrico Le Donne, Gareth Speight
ABSTRACTA Carnot group G admits Lusin approximation for horizontal curves if for any absolutely continuous horizontal curve γ in G and ε>0, there is a C1 horizontal curve Γ such that Γ=γ and Γ′=γ′ outside a set of measure at most ε. We verify this property for free Carnot groups of step 2 and show that it is preserved by images of Lie group homomorphisms preserving the horizontal layer. Consequently, all step 2 Carnot groups admit Lusin approximation for horizontal curves. More... »
PAGES111
http://scigraph.springernature.com/pub.10.1007/s00526-016-1054-z
DOIhttp://dx.doi.org/10.1007/s00526-016-1054-z
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1000574566
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "University of Jyv\u00e4skyl\u00e4",
"id": "https://www.grid.ac/institutes/grid.9681.6",
"name": [
"University of Jyvaskyla, Jyvaskyla, Finland"
],
"type": "Organization"
},
"familyName": "Le\u00a0Donne",
"givenName": "Enrico",
"id": "sg:person.01330732167.20",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01330732167.20"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Cincinnati",
"id": "https://www.grid.ac/institutes/grid.24827.3b",
"name": [
"University of Cincinnati, Cincinnati, USA"
],
"type": "Organization"
},
"familyName": "Speight",
"givenName": "Gareth",
"id": "sg:person.014241765465.32",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014241765465.32"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/978-3-0348-9210-0_2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1000282228",
"https://doi.org/10.1007/978-3-0348-9210-0_2"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-0348-9210-0_2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1000282228",
"https://doi.org/10.1007/978-3-0348-9210-0_2"
],
"type": "CreativeWork"
},
{
"id": "https://app.dimensions.ai/details/publication/pub.1003110623",
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-94-015-7793-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1003110623",
"https://doi.org/10.1007/978-94-015-7793-9"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-94-015-7793-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1003110623",
"https://doi.org/10.1007/978-94-015-7793-9"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02589761",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1017121799",
"https://doi.org/10.1007/bf02589761"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s002080000122",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1018180254",
"https://doi.org/10.1007/s002080000122"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11202-006-0072-z",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1019653262",
"https://doi.org/10.1007/s11202-006-0072-z"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02922053",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1023416382",
"https://doi.org/10.1007/bf02922053"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-7643-8133-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1027539116",
"https://doi.org/10.1007/978-3-7643-8133-2"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-7643-8133-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1027539116",
"https://doi.org/10.1007/978-3-7643-8133-2"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-319-04804-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1027975594",
"https://doi.org/10.1007/978-3-319-04804-8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-319-04804-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1027975594",
"https://doi.org/10.1007/978-3-319-04804-8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-88-7642-523-3_4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1031206322",
"https://doi.org/10.1007/978-88-7642-523-3_4"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01450011",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1033144373",
"https://doi.org/10.1007/bf01450011"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01450011",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1033144373",
"https://doi.org/10.1007/bf01450011"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00013-004-1057-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1039269585",
"https://doi.org/10.1007/s00013-004-1057-4"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s002080100228",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1052350785",
"https://doi.org/10.1007/s002080100228"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1063/1.3059875",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1057903516"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1512/iumj.2004.53.2293",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1067513395"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.2307/1971484",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1069676747"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.3934/cpaa.2013.12.881",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1071732108"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.4171/rmi/201",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1072320482"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.4171/rmi/924",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1072321276"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.4310/cag.2003.v11.n5.a4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1072457775"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.5565/publmat_47103_11",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1072982673"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1090/trans2/042/13",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1089183358"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.2140/apde.2017.10.1637",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1091138871"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1090/surv/091",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1098702172"
],
"type": "CreativeWork"
}
],
"datePublished": "2016-10",
"datePublishedReg": "2016-10-01",
"description": "A Carnot group G admits Lusin approximation for horizontal curves if for any absolutely continuous horizontal curve \u03b3 in G and \u03b5>0, there is a C1 horizontal curve \u0393 such that \u0393=\u03b3 and \u0393\u2032=\u03b3\u2032 outside a set of measure at most \u03b5. We verify this property for free Carnot groups of step 2 and show that it is preserved by images of Lie group homomorphisms preserving the horizontal layer. Consequently, all step 2 Carnot groups admit Lusin approximation for horizontal curves.",
"genre": "research_article",
"id": "sg:pub.10.1007/s00526-016-1054-z",
"inLanguage": [
"en"
],
"isAccessibleForFree": true,
"isFundedItemOf": [
{
"id": "sg:grant.4248544",
"type": "MonetaryGrant"
}
],
"isPartOf": [
{
"id": "sg:journal.1043284",
"issn": [
"0944-2669",
"1432-0835"
],
"name": "Calculus of Variations and Partial Differential Equations",
"type": "Periodical"
},
{
"issueNumber": "5",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "55"
}
],
"name": "Lusin approximation for horizontal curves in step 2 Carnot groups",
"pagination": "111",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"02bc57c23448f1ad4ac243879f378c51d99970d8efebcc0447bd8f5064c6b355"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s00526-016-1054-z"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1000574566"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s00526-016-1054-z",
"https://app.dimensions.ai/details/publication/pub.1000574566"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-11T12:21",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87082_00000000.jsonl",
"type": "ScholarlyArticle",
"url": "https://link.springer.com/10.1007%2Fs00526-016-1054-z"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00526-016-1054-z'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00526-016-1054-z'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00526-016-1054-z'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00526-016-1054-z'
This table displays all metadata directly associated to this object as RDF triples.
156 TRIPLES
21 PREDICATES
51 URIs
19 LITERALS
7 BLANK NODES