σ2-Diffeomorphisms between 4-dimensional annuli View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-06

AUTHORS

Li Chen, Guofang Wang

ABSTRACT

In this paper we study σ2-diffeomorphisms between 4-dimensional annuli, find a Nitsche type phenomenon for σ2-diffeomorphisms in 4-dimensional annuli and propose the following conjecture:There isσ2-diffeomorphism between 4-dimensional annuliA(r, R) andA(r∗,R∗)if and only if the bound12R2r2+r2R2≤R∗2r∗2holds. Then we show a slightly weaker result for extremal mappings which minimize the energy integral of F2 and E2 between the annuli A=S1×S1×S1×[r,R], by using the idea of free Lagrangians, which was introduced by Iwaniec and Onninen in (Mem Amer Math Soc 218:viii+105, 2012). More... »

PAGES

49

References to SciGraph publications

  • 2015-04. Skyrme–Faddeev Instantons on Complex Surfaces in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1990. Planar harmonic mappings in COMPUTATIONAL METHODS AND FUNCTION THEORY
  • 1975-12. Doubly-connected minimal surfaces in ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS
  • 2001-12. Univalent harmonic mappings of annuli and a conjecture of J. C. C. Nitsche in ISRAEL JOURNAL OF MATHEMATICS
  • 2005-06. Analysis of S2-Valued Maps and Faddeev’s Model in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1992. Minimal Surfaces II, Boundary Regularity in NONE
  • 2005-12. On the Nitsche conjecture for harmonic mappings in ℝ2 and ℝ3 in ISRAEL JOURNAL OF MATHEMATICS
  • 1975. Vorlesungen über Minimalflächen in NONE
  • 1992. Minimal Surfaces I, Boundary Value Problems in NONE
  • 2003-09. Holonomy and Skyrme's Model in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2007-01. Energy Splitting, Substantial Inequality, and Minimization for the Faddeev and Skyrme Models in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1992. Minimal Surfaces in MINIMAL SURFACES I
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00526-016-0990-y

    DOI

    http://dx.doi.org/10.1007/s00526-016-0990-y

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1032456304


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Hubei University", 
              "id": "https://www.grid.ac/institutes/grid.34418.3a", 
              "name": [
                "Faculty of Mathematics and Statistics, Hubei University, 430062, Wuhan, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chen", 
            "givenName": "Li", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Freiburg", 
              "id": "https://www.grid.ac/institutes/grid.5963.9", 
              "name": [
                "Albert-Ludwigs-Universit\u00e4t Freiburg, Mathematisches Institut Eckerstr. 1, 79104, Freiburg, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Guofang", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1000277434", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-02791-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000277434", 
              "https://doi.org/10.1007/978-3-662-02791-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-02791-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000277434", 
              "https://doi.org/10.1007/978-3-662-02791-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1006043014", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-08776-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006043014", 
              "https://doi.org/10.1007/978-3-662-08776-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-08776-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006043014", 
              "https://doi.org/10.1007/978-3-662-08776-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00250292", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007045118", 
              "https://doi.org/10.1007/bf00250292"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00250292", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007045118", 
              "https://doi.org/10.1007/bf00250292"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0087906", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012803054", 
              "https://doi.org/10.1007/bfb0087906"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2298/pim0475173l", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017439750"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.geomphys.2009.12.012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019273333"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-65619-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019315674", 
              "https://doi.org/10.1007/978-3-642-65619-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-65619-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019315674", 
              "https://doi.org/10.1007/978-3-642-65619-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0029-5582(62)90775-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019864545"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0029-5582(62)90775-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019864545"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1353/ajm.2010.0000", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025435535"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-006-0123-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026206013", 
              "https://doi.org/10.1007/s00220-006-0123-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-006-0123-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026206013", 
              "https://doi.org/10.1007/s00220-006-0123-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02762382", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026934637", 
              "https://doi.org/10.1007/bf02762382"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-02791-2_3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028999581", 
              "https://doi.org/10.1007/978-3-662-02791-2_3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02772628", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029507687", 
              "https://doi.org/10.1007/bf02772628"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-005-1289-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037389054", 
              "https://doi.org/10.1007/s00220-005-1289-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-005-1289-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037389054", 
              "https://doi.org/10.1007/s00220-005-1289-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-014-2182-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037887229", 
              "https://doi.org/10.1007/s00220-014-2182-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.physletb.2007.10.040", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041059669"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-003-0901-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044623916", 
              "https://doi.org/10.1007/s00220-003-0901-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1112/s0024610701002460", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049487250"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/0471705195.ch9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050053285"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/s0065-9266-2011-00640-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059337562"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/s0894-0347-2010-00685-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059339359"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/2310779", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069878769"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/conm/446/08639", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1089198531"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/cbo9780511546600", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098664229"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2016-06", 
        "datePublishedReg": "2016-06-01", 
        "description": "In this paper we study \u03c32-diffeomorphisms between 4-dimensional annuli, find a Nitsche type phenomenon for \u03c32-diffeomorphisms in 4-dimensional annuli and propose the following conjecture:There is\u03c32-diffeomorphism between 4-dimensional annuliA(r, R) andA(r\u2217,R\u2217)if and only if the bound12R2r2+r2R2\u2264R\u22172r\u22172holds. Then we show a slightly weaker result for extremal mappings which minimize the energy integral of F2 and E2 between the annuli A=S1\u00d7S1\u00d7S1\u00d7[r,R], by using the idea of free Lagrangians, which was introduced by Iwaniec and Onninen in (Mem Amer Math Soc 218:viii+105, 2012).", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00526-016-0990-y", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1043284", 
            "issn": [
              "0944-2669", 
              "1432-0835"
            ], 
            "name": "Calculus of Variations and Partial Differential Equations", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "55"
          }
        ], 
        "name": "\u03c32-Diffeomorphisms between 4-dimensional annuli", 
        "pagination": "49", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "9a9de5038d453255a3b8b0f41cf4689114a43535a1b3ecc56395d3c646e7af1b"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00526-016-0990-y"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1032456304"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00526-016-0990-y", 
          "https://app.dimensions.ai/details/publication/pub.1032456304"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T16:46", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000533.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs00526-016-0990-y"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00526-016-0990-y'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00526-016-0990-y'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00526-016-0990-y'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00526-016-0990-y'


     

    This table displays all metadata directly associated to this object as RDF triples.

    157 TRIPLES      21 PREDICATES      53 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00526-016-0990-y schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Nbdaa70aca64f49098e1b8078106a311e
    4 schema:citation sg:pub.10.1007/978-3-642-65619-4
    5 sg:pub.10.1007/978-3-662-02791-2
    6 sg:pub.10.1007/978-3-662-02791-2_3
    7 sg:pub.10.1007/978-3-662-08776-3
    8 sg:pub.10.1007/bf00250292
    9 sg:pub.10.1007/bf02762382
    10 sg:pub.10.1007/bf02772628
    11 sg:pub.10.1007/bfb0087906
    12 sg:pub.10.1007/s00220-003-0901-x
    13 sg:pub.10.1007/s00220-005-1289-6
    14 sg:pub.10.1007/s00220-006-0123-0
    15 sg:pub.10.1007/s00220-014-2182-y
    16 https://app.dimensions.ai/details/publication/pub.1000277434
    17 https://app.dimensions.ai/details/publication/pub.1006043014
    18 https://doi.org/10.1002/0471705195.ch9
    19 https://doi.org/10.1016/0029-5582(62)90775-7
    20 https://doi.org/10.1016/j.geomphys.2009.12.012
    21 https://doi.org/10.1016/j.physletb.2007.10.040
    22 https://doi.org/10.1017/cbo9780511546600
    23 https://doi.org/10.1090/conm/446/08639
    24 https://doi.org/10.1090/s0065-9266-2011-00640-4
    25 https://doi.org/10.1090/s0894-0347-2010-00685-6
    26 https://doi.org/10.1112/s0024610701002460
    27 https://doi.org/10.1353/ajm.2010.0000
    28 https://doi.org/10.2298/pim0475173l
    29 https://doi.org/10.2307/2310779
    30 schema:datePublished 2016-06
    31 schema:datePublishedReg 2016-06-01
    32 schema:description In this paper we study σ2-diffeomorphisms between 4-dimensional annuli, find a Nitsche type phenomenon for σ2-diffeomorphisms in 4-dimensional annuli and propose the following conjecture:There isσ2-diffeomorphism between 4-dimensional annuliA(r, R) andA(r∗,R∗)if and only if the bound12R2r2+r2R2≤R∗2r∗2holds. Then we show a slightly weaker result for extremal mappings which minimize the energy integral of F2 and E2 between the annuli A=S1×S1×S1×[r,R], by using the idea of free Lagrangians, which was introduced by Iwaniec and Onninen in (Mem Amer Math Soc 218:viii+105, 2012).
    33 schema:genre research_article
    34 schema:inLanguage en
    35 schema:isAccessibleForFree false
    36 schema:isPartOf N524a2f8701d9473e8e7c80d4f02e6191
    37 Nb69b3ea1e9e54ea99c4504b377febb7e
    38 sg:journal.1043284
    39 schema:name σ2-Diffeomorphisms between 4-dimensional annuli
    40 schema:pagination 49
    41 schema:productId N6cc5fbff084947b69c7e3e019244f1e1
    42 N8e000724527b4e1289d7ef0c90d57458
    43 N8ea07f0da28247eba26825dc524240f0
    44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032456304
    45 https://doi.org/10.1007/s00526-016-0990-y
    46 schema:sdDatePublished 2019-04-10T16:46
    47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    48 schema:sdPublisher N152a19c89f9d4423b9c679a816013279
    49 schema:url http://link.springer.com/10.1007%2Fs00526-016-0990-y
    50 sgo:license sg:explorer/license/
    51 sgo:sdDataset articles
    52 rdf:type schema:ScholarlyArticle
    53 N07adb8611ad04cae83ea9b1d69b785a6 schema:affiliation https://www.grid.ac/institutes/grid.34418.3a
    54 schema:familyName Chen
    55 schema:givenName Li
    56 rdf:type schema:Person
    57 N0ae48ab280cb41e78c117d66aaed8090 rdf:first N6e70766de1c64c04a34319116b93da5c
    58 rdf:rest rdf:nil
    59 N152a19c89f9d4423b9c679a816013279 schema:name Springer Nature - SN SciGraph project
    60 rdf:type schema:Organization
    61 N524a2f8701d9473e8e7c80d4f02e6191 schema:issueNumber 3
    62 rdf:type schema:PublicationIssue
    63 N6cc5fbff084947b69c7e3e019244f1e1 schema:name doi
    64 schema:value 10.1007/s00526-016-0990-y
    65 rdf:type schema:PropertyValue
    66 N6e70766de1c64c04a34319116b93da5c schema:affiliation https://www.grid.ac/institutes/grid.5963.9
    67 schema:familyName Wang
    68 schema:givenName Guofang
    69 rdf:type schema:Person
    70 N8e000724527b4e1289d7ef0c90d57458 schema:name dimensions_id
    71 schema:value pub.1032456304
    72 rdf:type schema:PropertyValue
    73 N8ea07f0da28247eba26825dc524240f0 schema:name readcube_id
    74 schema:value 9a9de5038d453255a3b8b0f41cf4689114a43535a1b3ecc56395d3c646e7af1b
    75 rdf:type schema:PropertyValue
    76 Nb69b3ea1e9e54ea99c4504b377febb7e schema:volumeNumber 55
    77 rdf:type schema:PublicationVolume
    78 Nbdaa70aca64f49098e1b8078106a311e rdf:first N07adb8611ad04cae83ea9b1d69b785a6
    79 rdf:rest N0ae48ab280cb41e78c117d66aaed8090
    80 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    81 schema:name Mathematical Sciences
    82 rdf:type schema:DefinedTerm
    83 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    84 schema:name Pure Mathematics
    85 rdf:type schema:DefinedTerm
    86 sg:journal.1043284 schema:issn 0944-2669
    87 1432-0835
    88 schema:name Calculus of Variations and Partial Differential Equations
    89 rdf:type schema:Periodical
    90 sg:pub.10.1007/978-3-642-65619-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019315674
    91 https://doi.org/10.1007/978-3-642-65619-4
    92 rdf:type schema:CreativeWork
    93 sg:pub.10.1007/978-3-662-02791-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000277434
    94 https://doi.org/10.1007/978-3-662-02791-2
    95 rdf:type schema:CreativeWork
    96 sg:pub.10.1007/978-3-662-02791-2_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028999581
    97 https://doi.org/10.1007/978-3-662-02791-2_3
    98 rdf:type schema:CreativeWork
    99 sg:pub.10.1007/978-3-662-08776-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006043014
    100 https://doi.org/10.1007/978-3-662-08776-3
    101 rdf:type schema:CreativeWork
    102 sg:pub.10.1007/bf00250292 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007045118
    103 https://doi.org/10.1007/bf00250292
    104 rdf:type schema:CreativeWork
    105 sg:pub.10.1007/bf02762382 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026934637
    106 https://doi.org/10.1007/bf02762382
    107 rdf:type schema:CreativeWork
    108 sg:pub.10.1007/bf02772628 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029507687
    109 https://doi.org/10.1007/bf02772628
    110 rdf:type schema:CreativeWork
    111 sg:pub.10.1007/bfb0087906 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012803054
    112 https://doi.org/10.1007/bfb0087906
    113 rdf:type schema:CreativeWork
    114 sg:pub.10.1007/s00220-003-0901-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1044623916
    115 https://doi.org/10.1007/s00220-003-0901-x
    116 rdf:type schema:CreativeWork
    117 sg:pub.10.1007/s00220-005-1289-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037389054
    118 https://doi.org/10.1007/s00220-005-1289-6
    119 rdf:type schema:CreativeWork
    120 sg:pub.10.1007/s00220-006-0123-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026206013
    121 https://doi.org/10.1007/s00220-006-0123-0
    122 rdf:type schema:CreativeWork
    123 sg:pub.10.1007/s00220-014-2182-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1037887229
    124 https://doi.org/10.1007/s00220-014-2182-y
    125 rdf:type schema:CreativeWork
    126 https://app.dimensions.ai/details/publication/pub.1000277434 schema:CreativeWork
    127 https://app.dimensions.ai/details/publication/pub.1006043014 schema:CreativeWork
    128 https://doi.org/10.1002/0471705195.ch9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050053285
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1016/0029-5582(62)90775-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019864545
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1016/j.geomphys.2009.12.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019273333
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1016/j.physletb.2007.10.040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041059669
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1017/cbo9780511546600 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098664229
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1090/conm/446/08639 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089198531
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1090/s0065-9266-2011-00640-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059337562
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1090/s0894-0347-2010-00685-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059339359
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1112/s0024610701002460 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049487250
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1353/ajm.2010.0000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025435535
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.2298/pim0475173l schema:sameAs https://app.dimensions.ai/details/publication/pub.1017439750
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.2307/2310779 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069878769
    151 rdf:type schema:CreativeWork
    152 https://www.grid.ac/institutes/grid.34418.3a schema:alternateName Hubei University
    153 schema:name Faculty of Mathematics and Statistics, Hubei University, 430062, Wuhan, People’s Republic of China
    154 rdf:type schema:Organization
    155 https://www.grid.ac/institutes/grid.5963.9 schema:alternateName University of Freiburg
    156 schema:name Albert-Ludwigs-Universität Freiburg, Mathematisches Institut Eckerstr. 1, 79104, Freiburg, Germany
    157 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...