Ontology type: schema:ScholarlyArticle Open Access: True
2015-05
AUTHORS ABSTRACTThe aim of this paper is to show that it makes sense to write the continuity equation on a metric measure space (X,d,m) and that absolutely continuous curves (μt) w.r.t. the distance W2 can be completely characterized as solutions of the continuity equation itself, provided we impose the condition μt≤Cm for every t and some C>0. More... »
PAGES149-177
http://scigraph.springernature.com/pub.10.1007/s00526-014-0744-7
DOIhttp://dx.doi.org/10.1007/s00526-014-0744-7
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1050068909
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Institut de Math\u00e9matiques de Jussieu",
"id": "https://www.grid.ac/institutes/grid.462500.5",
"name": [
"University of Nice, Nice, France",
"Institut de math\u00e9matiques de Jussieu, UPMC, Paris, France"
],
"type": "Organization"
},
"familyName": "Gigli",
"givenName": "Nicola",
"id": "sg:person.015012242515.20",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015012242515.20"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Paris Dauphine University",
"id": "https://www.grid.ac/institutes/grid.11024.36",
"name": [
"Universit\u00e9 Paris Dauphine, Paris, France"
],
"type": "Organization"
},
"familyName": "Han",
"givenName": "Bang-Xian",
"id": "sg:person.010244032333.30",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010244032333.30"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/s00222-013-0456-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005998425",
"https://doi.org/10.1007/s00222-013-0456-1"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1081/pde-100002243",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1007314090"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-540-34514-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1012306418",
"https://doi.org/10.1007/978-3-540-34514-5"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-540-34514-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1012306418",
"https://doi.org/10.1007/978-3-540-34514-5"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00526-006-0032-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1012840416",
"https://doi.org/10.1007/s00526-006-0032-2"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00526-006-0032-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1012840416",
"https://doi.org/10.1007/s00526-006-0032-2"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s002110050002",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1016132384",
"https://doi.org/10.1007/s002110050002"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1090/s0273-0979-07-01140-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1035436366"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-32160-3_1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1036211003",
"https://doi.org/10.1007/978-3-642-32160-3_1"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/cpa.21431",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1037093270"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-540-71050-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1043936119",
"https://doi.org/10.1007/978-3-540-71050-9"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-540-71050-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1043936119",
"https://doi.org/10.1007/978-3-540-71050-9"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1090/memo/1113",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1059344070"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1215/00127094-2681605",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1064411389"
],
"type": "CreativeWork"
}
],
"datePublished": "2015-05",
"datePublishedReg": "2015-05-01",
"description": "The aim of this paper is to show that it makes sense to write the continuity equation on a metric measure space (X,d,m) and that absolutely continuous curves (\u03bct) w.r.t. the distance W2 can be completely characterized as solutions of the continuity equation itself, provided we impose the condition \u03bct\u2264Cm for every t and some C>0.",
"genre": "research_article",
"id": "sg:pub.10.1007/s00526-014-0744-7",
"inLanguage": [
"en"
],
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1043284",
"issn": [
"0944-2669",
"1432-0835"
],
"name": "Calculus of Variations and Partial Differential Equations",
"type": "Periodical"
},
{
"issueNumber": "1-2",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "53"
}
],
"name": "The continuity equation on metric measure spaces",
"pagination": "149-177",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"ee8343989cb0ccacf049016d6d91a58927831d9ddc53fef00afd098720b338ae"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s00526-014-0744-7"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1050068909"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s00526-014-0744-7",
"https://app.dimensions.ai/details/publication/pub.1050068909"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-10T15:05",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000534.jsonl",
"type": "ScholarlyArticle",
"url": "http://link.springer.com/10.1007%2Fs00526-014-0744-7"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00526-014-0744-7'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00526-014-0744-7'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00526-014-0744-7'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00526-014-0744-7'
This table displays all metadata directly associated to this object as RDF triples.
111 TRIPLES
21 PREDICATES
38 URIs
19 LITERALS
7 BLANK NODES