Entropic Burgers’ equation via a minimizing movement scheme based on the Wasserstein metric View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-05

AUTHORS

Nicola Gigli, Felix Otto

ABSTRACT

As noted by the second author in the context of unstable two-phase porous medium flow, entropy solutions of Burgers’ equation can be recovered from a minimizing movement scheme involving the Wasserstein metric in the limit of vanishing time step size (Otto, Commun Pure Appl Math, 1999). In this paper, we give a simpler proof by verifying that the anti-derivative is a viscosity solution of the associated Hamilton Jacobi equation. More... »

PAGES

181-206

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00526-012-0515-2

DOI

http://dx.doi.org/10.1007/s00526-012-0515-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1018376846


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Nice Sophia Antipolis University", 
          "id": "https://www.grid.ac/institutes/grid.10737.32", 
          "name": [
            "University of Nice, Nice, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gigli", 
        "givenName": "Nicola", 
        "id": "sg:person.015012242515.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015012242515.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Mathematics in the Sciences", 
          "id": "https://www.grid.ac/institutes/grid.419532.8", 
          "name": [
            "Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Otto", 
        "givenName": "Felix", 
        "id": "sg:person.014166007000.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014166007000.05"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1081/pde-100002243", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007314090"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-0396(73)90043-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018546788"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0312(199907)52:7<873::aid-cpa5>3.0.co;2-t", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023528151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1070/sm1970v010n02abeh002156", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058198893"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-05", 
    "datePublishedReg": "2013-05-01", 
    "description": "As noted by the second author in the context of unstable two-phase porous medium flow, entropy solutions of Burgers\u2019 equation can be recovered from a minimizing movement scheme involving the Wasserstein metric in the limit of vanishing time step size (Otto, Commun Pure Appl Math, 1999). In this paper, we give a simpler proof by verifying that the anti-derivative is a viscosity solution of the associated Hamilton Jacobi equation.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00526-012-0515-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1043284", 
        "issn": [
          "0944-2669", 
          "1432-0835"
        ], 
        "name": "Calculus of Variations and Partial Differential Equations", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1-2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "47"
      }
    ], 
    "name": "Entropic Burgers\u2019 equation via a minimizing movement scheme based on the Wasserstein metric", 
    "pagination": "181-206", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "578f546f8245e90c84b5c59fdd192875d24f294243258638eddc39d7e194954b"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00526-012-0515-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1018376846"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00526-012-0515-2", 
      "https://app.dimensions.ai/details/publication/pub.1018376846"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T02:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000531.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00526-012-0515-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00526-012-0515-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00526-012-0515-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00526-012-0515-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00526-012-0515-2'


 

This table displays all metadata directly associated to this object as RDF triples.

83 TRIPLES      21 PREDICATES      31 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00526-012-0515-2 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N03a5f41a444543ea8c426b92f0e460d5
4 schema:citation https://doi.org/10.1002/(sici)1097-0312(199907)52:7<873::aid-cpa5>3.0.co;2-t
5 https://doi.org/10.1016/0022-0396(73)90043-0
6 https://doi.org/10.1070/sm1970v010n02abeh002156
7 https://doi.org/10.1081/pde-100002243
8 schema:datePublished 2013-05
9 schema:datePublishedReg 2013-05-01
10 schema:description As noted by the second author in the context of unstable two-phase porous medium flow, entropy solutions of Burgers’ equation can be recovered from a minimizing movement scheme involving the Wasserstein metric in the limit of vanishing time step size (Otto, Commun Pure Appl Math, 1999). In this paper, we give a simpler proof by verifying that the anti-derivative is a viscosity solution of the associated Hamilton Jacobi equation.
11 schema:genre research_article
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf N218738f1e21c42d19e7cf84f2e2c82f0
15 Ndafdbe90a6f84cc899d6914a170dcd57
16 sg:journal.1043284
17 schema:name Entropic Burgers’ equation via a minimizing movement scheme based on the Wasserstein metric
18 schema:pagination 181-206
19 schema:productId Nb0f6a012152448c898021a68cc45ae6c
20 Nddc7f8617cc54ff9ae9cbe1f04ac2376
21 Ne8543b89b6354658ae9f445fc76f60cc
22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018376846
23 https://doi.org/10.1007/s00526-012-0515-2
24 schema:sdDatePublished 2019-04-11T02:14
25 schema:sdLicense https://scigraph.springernature.com/explorer/license/
26 schema:sdPublisher N8d76cb6cd77e4877813562668d586ba6
27 schema:url http://link.springer.com/10.1007%2Fs00526-012-0515-2
28 sgo:license sg:explorer/license/
29 sgo:sdDataset articles
30 rdf:type schema:ScholarlyArticle
31 N03a5f41a444543ea8c426b92f0e460d5 rdf:first sg:person.015012242515.20
32 rdf:rest N0504e7eb2ccc423db4f17ad38578fc9d
33 N0504e7eb2ccc423db4f17ad38578fc9d rdf:first sg:person.014166007000.05
34 rdf:rest rdf:nil
35 N218738f1e21c42d19e7cf84f2e2c82f0 schema:volumeNumber 47
36 rdf:type schema:PublicationVolume
37 N8d76cb6cd77e4877813562668d586ba6 schema:name Springer Nature - SN SciGraph project
38 rdf:type schema:Organization
39 Nb0f6a012152448c898021a68cc45ae6c schema:name dimensions_id
40 schema:value pub.1018376846
41 rdf:type schema:PropertyValue
42 Ndafdbe90a6f84cc899d6914a170dcd57 schema:issueNumber 1-2
43 rdf:type schema:PublicationIssue
44 Nddc7f8617cc54ff9ae9cbe1f04ac2376 schema:name readcube_id
45 schema:value 578f546f8245e90c84b5c59fdd192875d24f294243258638eddc39d7e194954b
46 rdf:type schema:PropertyValue
47 Ne8543b89b6354658ae9f445fc76f60cc schema:name doi
48 schema:value 10.1007/s00526-012-0515-2
49 rdf:type schema:PropertyValue
50 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
51 schema:name Mathematical Sciences
52 rdf:type schema:DefinedTerm
53 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
54 schema:name Pure Mathematics
55 rdf:type schema:DefinedTerm
56 sg:journal.1043284 schema:issn 0944-2669
57 1432-0835
58 schema:name Calculus of Variations and Partial Differential Equations
59 rdf:type schema:Periodical
60 sg:person.014166007000.05 schema:affiliation https://www.grid.ac/institutes/grid.419532.8
61 schema:familyName Otto
62 schema:givenName Felix
63 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014166007000.05
64 rdf:type schema:Person
65 sg:person.015012242515.20 schema:affiliation https://www.grid.ac/institutes/grid.10737.32
66 schema:familyName Gigli
67 schema:givenName Nicola
68 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015012242515.20
69 rdf:type schema:Person
70 https://doi.org/10.1002/(sici)1097-0312(199907)52:7<873::aid-cpa5>3.0.co;2-t schema:sameAs https://app.dimensions.ai/details/publication/pub.1023528151
71 rdf:type schema:CreativeWork
72 https://doi.org/10.1016/0022-0396(73)90043-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018546788
73 rdf:type schema:CreativeWork
74 https://doi.org/10.1070/sm1970v010n02abeh002156 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058198893
75 rdf:type schema:CreativeWork
76 https://doi.org/10.1081/pde-100002243 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007314090
77 rdf:type schema:CreativeWork
78 https://www.grid.ac/institutes/grid.10737.32 schema:alternateName Nice Sophia Antipolis University
79 schema:name University of Nice, Nice, France
80 rdf:type schema:Organization
81 https://www.grid.ac/institutes/grid.419532.8 schema:alternateName Max Planck Institute for Mathematics in the Sciences
82 schema:name Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany
83 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...