Quasiconformal extension fields View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2011-09

AUTHORS

Pekka Pankka, Kai Rajala

ABSTRACT

We consider extensions of differential fields of mappings and obtain a lower bound for energy of quasiconformal extension fields in terms of the topological degree. We also consider the related minimization problem for the q-harmonic energy, and show that the energy minimizers admit higher integrability.

PAGES

73-91

References to SciGraph publications

  • 2011-06. Flat forms, bi-Lipschitz parametrizations, and smoothability of manifolds in PUBLICATIONS MATHÉMATIQUES DE L'IHÉS
  • 1993-03. Integral estimates for null Lagrangians in ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS
  • 1993. Quasiregular Mappings in NONE
  • 1966-07. Some geometrical properties of functions and mappings with generalized derivatives in SIBERIAN MATHEMATICAL JOURNAL
  • 2010-06. Quasiconformal Frames in ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00526-010-0380-9

    DOI

    http://dx.doi.org/10.1007/s00526-010-0380-9

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1035953211


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Helsinki", 
              "id": "https://www.grid.ac/institutes/grid.7737.4", 
              "name": [
                "Department of Mathematics and Statistics, University of Helsinki, P.O. Box 68, 00014, Helsinki, Finland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pankka", 
            "givenName": "Pekka", 
            "id": "sg:person.01252167767.43", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01252167767.43"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Jyv\u00e4skyl\u00e4", 
              "id": "https://www.grid.ac/institutes/grid.9681.6", 
              "name": [
                "Department of Mathematics and Statistics, University of Jyv\u00e4skyl\u00e4, P.O. Box 35, 40014, Jyv\u00e4skyl\u00e4, Finland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rajala", 
            "givenName": "Kai", 
            "id": "sg:person.015130314153.11", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015130314153.11"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf00411477", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004504903", 
              "https://doi.org/10.1007/bf00411477"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10240-011-0032-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010484363", 
              "https://doi.org/10.1007/s10240-011-0032-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00973267", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021410946", 
              "https://doi.org/10.1007/bf00973267"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00973267", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021410946", 
              "https://doi.org/10.1007/bf00973267"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-78201-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032838454", 
              "https://doi.org/10.1007/978-3-642-78201-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-78201-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032838454", 
              "https://doi.org/10.1007/978-3-642-78201-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00205-009-0257-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035244389", 
              "https://doi.org/10.1007/s00205-009-0257-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00205-009-0257-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035244389", 
              "https://doi.org/10.1007/s00205-009-0257-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00205-009-0257-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035244389", 
              "https://doi.org/10.1007/s00205-009-0257-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/b978-0-12-158860-1.50034-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039297824"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1215/s0012-7094-02-11412-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064415287"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1307/mmj/1029004603", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064976622"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/1970652", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069675969"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5186/aasfm.1981.0626", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072648281"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1515/9781400882588-021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086540640"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2011-09", 
        "datePublishedReg": "2011-09-01", 
        "description": "We consider extensions of differential fields of mappings and obtain a lower bound for energy of quasiconformal extension fields in terms of the topological degree. We also consider the related minimization problem for the q-harmonic energy, and show that the energy minimizers admit higher integrability.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00526-010-0380-9", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1043284", 
            "issn": [
              "0944-2669", 
              "1432-0835"
            ], 
            "name": "Calculus of Variations and Partial Differential Equations", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1-2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "42"
          }
        ], 
        "name": "Quasiconformal extension fields", 
        "pagination": "73-91", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "ab44d67d5c90b4a66e59fa5628ac2155c4f9012c95f603a45c107b507ee77b94"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00526-010-0380-9"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1035953211"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00526-010-0380-9", 
          "https://app.dimensions.ai/details/publication/pub.1035953211"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T20:51", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000533.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs00526-010-0380-9"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00526-010-0380-9'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00526-010-0380-9'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00526-010-0380-9'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00526-010-0380-9'


     

    This table displays all metadata directly associated to this object as RDF triples.

    109 TRIPLES      21 PREDICATES      38 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00526-010-0380-9 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Ndd5ed94aa99242ce96952e11ec400569
    4 schema:citation sg:pub.10.1007/978-3-642-78201-5
    5 sg:pub.10.1007/bf00411477
    6 sg:pub.10.1007/bf00973267
    7 sg:pub.10.1007/s00205-009-0257-2
    8 sg:pub.10.1007/s10240-011-0032-4
    9 https://doi.org/10.1016/b978-0-12-158860-1.50034-4
    10 https://doi.org/10.1215/s0012-7094-02-11412-4
    11 https://doi.org/10.1307/mmj/1029004603
    12 https://doi.org/10.1515/9781400882588-021
    13 https://doi.org/10.2307/1970652
    14 https://doi.org/10.5186/aasfm.1981.0626
    15 schema:datePublished 2011-09
    16 schema:datePublishedReg 2011-09-01
    17 schema:description We consider extensions of differential fields of mappings and obtain a lower bound for energy of quasiconformal extension fields in terms of the topological degree. We also consider the related minimization problem for the q-harmonic energy, and show that the energy minimizers admit higher integrability.
    18 schema:genre research_article
    19 schema:inLanguage en
    20 schema:isAccessibleForFree true
    21 schema:isPartOf N43135c8e371245ca9649df7c18cc6935
    22 N7b17d55255d24692bf93f87bb28c89c1
    23 sg:journal.1043284
    24 schema:name Quasiconformal extension fields
    25 schema:pagination 73-91
    26 schema:productId N585d85c191834212954f8d195cea3553
    27 Nb128cbd6a24c4c55af881113b8f9ce86
    28 Nc5e7b8c530754d4abbe5ac0f080b12a7
    29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035953211
    30 https://doi.org/10.1007/s00526-010-0380-9
    31 schema:sdDatePublished 2019-04-10T20:51
    32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    33 schema:sdPublisher Nb886f4eff6704bd5817b68a26e42d67b
    34 schema:url http://link.springer.com/10.1007%2Fs00526-010-0380-9
    35 sgo:license sg:explorer/license/
    36 sgo:sdDataset articles
    37 rdf:type schema:ScholarlyArticle
    38 N43135c8e371245ca9649df7c18cc6935 schema:volumeNumber 42
    39 rdf:type schema:PublicationVolume
    40 N585d85c191834212954f8d195cea3553 schema:name readcube_id
    41 schema:value ab44d67d5c90b4a66e59fa5628ac2155c4f9012c95f603a45c107b507ee77b94
    42 rdf:type schema:PropertyValue
    43 N7b17d55255d24692bf93f87bb28c89c1 schema:issueNumber 1-2
    44 rdf:type schema:PublicationIssue
    45 Na5b47fafb4f14bd09a187ee8feed88b2 rdf:first sg:person.015130314153.11
    46 rdf:rest rdf:nil
    47 Nb128cbd6a24c4c55af881113b8f9ce86 schema:name dimensions_id
    48 schema:value pub.1035953211
    49 rdf:type schema:PropertyValue
    50 Nb886f4eff6704bd5817b68a26e42d67b schema:name Springer Nature - SN SciGraph project
    51 rdf:type schema:Organization
    52 Nc5e7b8c530754d4abbe5ac0f080b12a7 schema:name doi
    53 schema:value 10.1007/s00526-010-0380-9
    54 rdf:type schema:PropertyValue
    55 Ndd5ed94aa99242ce96952e11ec400569 rdf:first sg:person.01252167767.43
    56 rdf:rest Na5b47fafb4f14bd09a187ee8feed88b2
    57 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    58 schema:name Mathematical Sciences
    59 rdf:type schema:DefinedTerm
    60 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    61 schema:name Pure Mathematics
    62 rdf:type schema:DefinedTerm
    63 sg:journal.1043284 schema:issn 0944-2669
    64 1432-0835
    65 schema:name Calculus of Variations and Partial Differential Equations
    66 rdf:type schema:Periodical
    67 sg:person.01252167767.43 schema:affiliation https://www.grid.ac/institutes/grid.7737.4
    68 schema:familyName Pankka
    69 schema:givenName Pekka
    70 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01252167767.43
    71 rdf:type schema:Person
    72 sg:person.015130314153.11 schema:affiliation https://www.grid.ac/institutes/grid.9681.6
    73 schema:familyName Rajala
    74 schema:givenName Kai
    75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015130314153.11
    76 rdf:type schema:Person
    77 sg:pub.10.1007/978-3-642-78201-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032838454
    78 https://doi.org/10.1007/978-3-642-78201-5
    79 rdf:type schema:CreativeWork
    80 sg:pub.10.1007/bf00411477 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004504903
    81 https://doi.org/10.1007/bf00411477
    82 rdf:type schema:CreativeWork
    83 sg:pub.10.1007/bf00973267 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021410946
    84 https://doi.org/10.1007/bf00973267
    85 rdf:type schema:CreativeWork
    86 sg:pub.10.1007/s00205-009-0257-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035244389
    87 https://doi.org/10.1007/s00205-009-0257-2
    88 rdf:type schema:CreativeWork
    89 sg:pub.10.1007/s10240-011-0032-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010484363
    90 https://doi.org/10.1007/s10240-011-0032-4
    91 rdf:type schema:CreativeWork
    92 https://doi.org/10.1016/b978-0-12-158860-1.50034-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039297824
    93 rdf:type schema:CreativeWork
    94 https://doi.org/10.1215/s0012-7094-02-11412-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064415287
    95 rdf:type schema:CreativeWork
    96 https://doi.org/10.1307/mmj/1029004603 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064976622
    97 rdf:type schema:CreativeWork
    98 https://doi.org/10.1515/9781400882588-021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086540640
    99 rdf:type schema:CreativeWork
    100 https://doi.org/10.2307/1970652 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069675969
    101 rdf:type schema:CreativeWork
    102 https://doi.org/10.5186/aasfm.1981.0626 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072648281
    103 rdf:type schema:CreativeWork
    104 https://www.grid.ac/institutes/grid.7737.4 schema:alternateName University of Helsinki
    105 schema:name Department of Mathematics and Statistics, University of Helsinki, P.O. Box 68, 00014, Helsinki, Finland
    106 rdf:type schema:Organization
    107 https://www.grid.ac/institutes/grid.9681.6 schema:alternateName University of Jyväskylä
    108 schema:name Department of Mathematics and Statistics, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland
    109 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...